

BF
M

Table of Contents
1. Abstract··001
2. Content Overview··002
3. Overall Design··005
 3.1 Open Source Mobile Blockchain System···005
 3.2 Blockchain Storage Mechanism··008
 3.2.1 RSD Storage Mechanism··008
 3.2.2 Private Data Storage···012
 3.2.3 Distributed Storage··013
 3.3 Blockchain Network Mechanism··015
 3.3.1 Full-Link Duplex Communication Network·································015
 3.3.2 Node Addressing··017
 3.3.3 Bluetooth, NFC, AIRDROP Network Transmission······················018
 3.4 Blockchain Evolution···019
 3.5 Cross-Chain Transactions··021
 3.5.1 Cross-Chain Network Interconnection··021
 3.5.2 Cross-Chain Decoupling··022
 3.5.3 Cross-Chain Asset Interchange··023
 3.6 Three-Layer Blockchain Architecture···026
 3.7 Large Block··027
 3.8 Address Private Key Management Mechanism-My Secret·················028
 3.9 Automatic Upgrade···029
 3.10 Fork Merging···030
 3.11 Distributed Computing··030
4. Consensus Protocol···032
 4.1 Consensus Algorithm of BFMeta···032
 4.1.1 TPOW+DPOP···032
 4.1.2 Miner Protocol···036

BF
M

 4.1.2.1 Authorized Creation Protocol··036
 4.1.2.2 Genesis Basic Protocol··036
 4.1.2.3 Consensus Incentive Agreement······································036
 4.1.2.4 Block Forging Agreement···037
 4.1.2.5 Contract Execution Protocol···037
 4.1.2.6 Event Processing Protocol···037
 4.1.2.7 Proof of Algorithm Protocol··037
 4.1.2.8 Network Communication Protocol···································038
 4.2 Block Forger (Miner Node) Rotation···038
 4.2.1 Multi-Node, Multi-Process Block-Generating Method··················038
 4.2.2 Block Forger Election Algorithm··040
 4.2.2.1 Becoming a Trustee··042
 4.2.2.2 Receiving/rejecting Votes··043
 4.2.2.3 Address Account Voting on Trustees·································044
 4.2.2.4 Automatic Node Voting···044
 4.2.2.5 Entering the Candidate zone···044
 4.2.2.6 Becoming a Forger··045
 4.2.3 Consensus Motivation··047
 4.2.3.1 Consensus Incentive Mechanism·····································047
 4.2.3.2 Total Incentive Received for Forged Blocks·······················048
 4.2.4 Voting Algorithm···049
 4.2.4.1 Getting Ballots···050
 4.2.4.2 Automatic Voting··051
 4.2.4.3 Automatic Voting Recommendation Algorithm················052
 4.2.4.4 Manual Voting··053
 4.2.5 Voting Incentive··053
 4.2.5.1 Incentive Formula··054
 4.2.5.2 End-of-Round Calculation··055
 4.2.6 Distributed Transaction Synchronization····································055

BF
M

5. Programmable Contracts···057
 5.1 Smart Contracts···057
 5.2 Digital Products (DP/NFT)···059
 5.3 DeFi Support··060
6. Programmable Digital Asset Issuance···062
 6.1 Destruction Issuance (Deflation Mechanism)·····································062
 6.2 Decentralized Asset Exchange···062
7. Chain Services···064
 7.1 Chain Domain Name-LNS···064
 7.2 DWeb···065
 7.3 Dual Offline Payment··065
 7.4 On-chain Red Envelope···066
 7.5 Service Market···067
 7.6 Crossing the World··067
8. Interface Documentation···069
 8.1 Interface Incoming Parameters and Return Parameters
 Description··069
 8.1.1 Example of Passing/Entering Parameters····································069
 8.2 Basic Interface···070
 8.2.1 Getting BFChain Version Number···070
 8.2.2 Getting the Current Latest Block of the Local Node······················071
 8.2.3 Getting the Specified Block··071
 8.2.4 Getting the Specified Event··071
 8.2.5 Getting the Last Transaction of an Account··································072
 8.2.6 Creating an Account··073
 8.2.7 Getting Node Status··073
 8.2.8 Getting the Last Transaction of the Account According to the
 Transaction Type···074
 8.2.9 Getting the Event Type···074

BF
M

 8.3 Event Class Interface Usage Description···076
 8.3.1 Transfer Events··076
 8.3.1.1 Creating a Transfer Event··076
 8.3.1.2 Creating a Transfer Event (with Security Key)···················077
 8.3.1.3 Sending a Transfer Event··077
 8.3.2 Setting Up a Secure Password Event···078
 8.3.2.1 Creating a Set-Security-Password Event····························078
 8.3.2.2 Creating a Set-Username Event (with Security Key)···········078
 8.3.2.3 Sending a Set-Security-Password Event·····························079
 8.3.3 Setting the User Name Event··080
 8.3.3.1 Creating a Set-Username Event···080
 8.3.3.2 Creating a Set-Username Event (with Security Key)···········080
 8.3.3.3 Sending a Set-Username Event···081
 8.3.4 Registered Trustee Events··081
 8.3.4.1 Creating a Registered Trustee Event··································081
 8.3.4.2 Creating a Registered Trustee Event (with Security Key)···082
 8.3.4.3 Sending a Registered Trustee Event··································082
 8.3.5 Receiving Polling Events··083
 8.3.5.1 Creating a Receive-Vote Event···083
 8.3.5.2 Creating A Receive-Vote Event (with Security Key)············083
 8.3.5.3 Sending and Receiving Vote Events···································084
 8.3.6 Rejecting Votes···084
 8.3.6.1 Creating A Reject-Vote Event···084
 8.3.6.2 Creating a Reject-Vote Event (with Security Key)···············085
 8.3.6.3 Sending a Reject-Vote Event··085
 8.3.7 Polling Events··086
 8.3.7.1 Creating a Voting Event···086
 8.3.7.2 Creating a Voting Event (with Security Key)·······················086

BF
M

 8.3.7.3 Sending and Receiving a Polling Event······························087
 8.3.8 Publishing DApp Events···087
 8.3.8.1 Creating a Release-DApp Event···087
 8.3.8.2 Creating an Issue-DApp Event (with Security Key)·············088
 8.3.8.3 Sending an Issue-DApp Event···089
 8.3.9 DApp Purchase Events···090
 8.3.9.1 Creating a Purchase-DApp Event······································090
 8.3.9.2 Creating a Purchase-DApp Event (with Security Key)········090
 8.3.9.3 Sending a Purchase-DApp Event·······································091
 8.3.10 Depositing Events···092
 8.3.10.1 Creating a Deposition Event··092
 8.3.10.2 Creating a Deposit Event (with Security Key)···················093
 8.3.10.3 Sending a Deposit Event··093
 8.3.11 Asset Issuance Events···094
 8.3.11.1 Creating an Asset Issuance Event····································094
 8.3.11.2 Creating an Asset Issuance Event (with Security Key)······095
 8.3.11.3 Sending an Asset Issuance Event·····································095
 8.3.12 Asset Destruction Events···096
 8.3.12.1 Creating an Asset Destruction Event·······························096
 8.3.12.2 Create an Asset Destruction Event (with Security Key)····097
 8.3.12.3 Sending an Asset Destruction Event································097
 8.3.13 Asset Exchange Events···098
 8.3.13.1 Creating an Asset Exchange Event··································098
 8.3.13.2 Creating an Asset Exchange Event (with Security Key)····099
 8.3.13.3 Sending an Asset Exchange Event···································100
 8.3.14 Acceptance of an Asset Exchange Event·····································101
 8.3.14.1 Accepting an Asset Exchange Event································101
 8.3.14.2 Creating an Accept-Asset-Exchange Event

BF
M

 (with Security Key)···102
 8.3.14.3 Sending an Accept-Asset-Exchange Event·······················102
 8.4 Instructions for Using the Node Management Interface····················103
 8.4.1 Safety Close of Node···103
 8.4.2 Setting Node Password···103
 8.4.3 Verifying Node Password···104
 8.4.4 Adding Node Administrator···105
 8.4.5 Getting Node Administrator···105
 8.4.6 Verify Node Administrator···106
 8.4.7 Deleting Node Administrator···106
 8.4.8 Resetting Node Administrator···107
 8.4.9 Binding Node Accounts···107
 8.4.10 Getting Node Trustee···108
 8.4.11 Querying All Forgers Registered by the Node·····························108
 8.4.12 Query Details Of the Forger Registered by the Node···················109
 8.4.13 Getting Node Details··109
 8.4.14 Node Information Query··110
 8.4.15 Setting Node Configuration Information···································111
 8.4.16 Getting Node Configuration Information···································111
 8.4.17 Getting Node State (Real-Time Information)······························112
 8.4.18 Getting Node Access Statistics··112
 8.4.19 Getting Running Log Type of the Node······································113
 8.4.20 Getting the List of the Node Running Log··································114
 8.4.21 Getting Contents of the Node Running Log································114
 8.4.22 Deleting the Node Running Log···115
 8.4.23 Getting the Node Email Address···116
 8.4.24 Setting the Node Email Address···116
 8.4.25 Verifying Node Trustees by Node Private Key·····························118

BF
M

 8.4.26 Setting Node Access Whitelist··119
 8.4.27 Getting Node Access Whitelist··119
 8.4.28 Deleting Node Access Whitelist··120
 8.4.29 Getting Network-Related Information About a Node Process·····120
 8.4.30 Getting Node Process CPU Information·····································121
 8.4.31 Getting Node Process Memory Information······························122
 8.4.32 Sending Node Status at Regular Intervals···································123
 8.4.33 Timed Sending of Node CPU,
 Memory and Network Information··123
 8.4.34 Getting Information About a Node···124
 8.4.35 Getting Node Status··124
9. Application Tools···125
 9.1 Instant Messenger-Secret Chat··125
 9.2 Five Knocks··125
 9.3 Eye of God··127
10. FDM Foundation and Token Distribution···128
11. Disclaimer··129

001

BF
M

1.Abstract

1. Abstract

Metaverse is a trusted digital value interaction network based on web3.0

technology system and operation mechanism support, and is a new web3.0 digital

ecology with public chain as its core. It provides immersive experience based on

virtual reality technology and builds a new social and economic system based

on blockchain technology, which makes the virtual world and the real world

closely integrated in the economic system, social system and identity system. The

blockchain underlying operating system is the core of the metaverse economic

system construction. BFMeta, the public chain of BFChain metaverse built on top

of the world's leading open source BFChain blockchain operating system, inherits

the excellent performance of BFChain public chain underlying high efficiency,

security, high scalability and high carrying capacity, and on this basis, for the

fundamental characteristics of metaverse, it provides distributed storage, end-to-

end communication, distributed digital identity, distributed credit system, large-

scale consumer-grade applications, virtual reality technology interface, cross-

chain compatibility, etc. Application-level breakthroughs and innovations have

been made, aiming to become a global super metaverse public chain system and

support 5 billion Internet users worldwide to step into the new metaverse world.

002

BF
M

2. Content Overview

BFMeta is a metaverse super public chain built on top of the world's leading

open-source Bioforest chain blockchain operating system. Through its series

of disruptive innovations at the level of the underlying core components of the

blockchain, it realizes a strong support for the construction of the metaverse

economic system. Core features of BFMeta include:

1) High Scalability

Adopting energy-saving, secure and efficient consensus algorithm, combined with

native cross-chain, distributed storage, distributed computing and other functions,

it can support billions of users worldwide to develop and experience Web3.0 and

metaverse applications.

2) Mobile terminal direct connection to the chain

BFMeta breaks the constraint that traditional blockchain technology must run

on x86 PC, and extends the application scope of blockchain to mobile terminals,

such as Android terminal, IOS terminal, Windows terminal, Linux, Unix and other

terminals support direct connection to the chain, and the terminal is the node and

the node is the service. Therefore, each individual can directly enter the metaverse

economic network system through mobile terminals.

3) Support distributed digital identity DID

Through BFMeta distributed infrastructure, a new type of self-sovereign and

verifiable distributed digital identity can be realized. Unlike the centralized

platform where the platform controls the digital identity, the digital identity on

2. Content Overview

003

BF
M

BFMeta is in the hands of the user. the advantages of BFMeta distributed digital

identity include: highly secure, the user's identity information will not be leaked

and the information is held by the user; autonomous and controllable, the user can

manage the identity independently and control the sharing of their identity data;

portable, the identity identity owners are able to use it wherever they need it.

4) New support for Defi

BFMeta supports both DeFi for various digital assets (Tokens) and DeFi for digital

products DPs. DPFi is BFMeta's unique liquidity protocol for digital products DPs,

which allows DP owners to obtain secured asset loans from peer-to-peer liquidity

providers in a fully de-trusted manner, increasing the liquidity of the DP assets

they own. DP liquidity providers use DPFi to earn attractive returns or have access

to DPs at a price below their market value in the event of loan default.

5) Digital Asset Interoperability Across Chains

Through homogeneous cross-chain technology as well as heterogeneous cross-

chain technology, it enables the issuance and management of digital assets and

digital products/NFT, and supports parallel chain, evolutionary chain, sub-chain,

multi-chain concurrency and cross-chain asset interoperability.

6) Support for XR and other digital interaction technologies

The unique mobile terminal chain technology can access any XR hardware device

to realize the high integration of metaverse immersion experience and economic

system and value flow system, and truly realize the leap of XR technology from

virtual reality game to metaverse social economy.

7) Complete development tools

It has complete development documents, interfaces and SDK support, and has

complete tools for blockchain configuration management, service hall, industry

2. Content Overview

004

BF
M

collaboration and transformation, which can meet the development needs of

global developers based on the underlying blockchain.

2. Content Overview

005

BF
M

3. Overall Design
3.1 Open Source Mobile Blockchain System

Traditional blockchain technology applications are generally applicable to the

service side with large data computing capacity and high asset. With the gradual

exploration of blockchain technology, it is found that the current blockchain

applications as well as blockchain technology solutions generally have a problem:

it does not support mobile. The upper layer of blockchain applications all require

third-party service nodes to provide mobile services. For a blockchain technology

based on decentralized design and solving credit problems, it is against the original

design intention that a third-party credit intermediary needs to be introduced to

provide terminal services.

The future blockchain needs to support mobile terminals. First of all, blockchain

is a new generation infrastructure built on top of the Internet to solve the credit

problem, and it brings progress. If the applications built on blockchain still

require the use of traditional PCs to carry out access, then this is somehow a

retrograde step. If blockchain is only used on the server side to solve the problem

of inter-institutional credit, it will limit the development of blockchain to a great

extent. If the application of blockchain cannot face the end-user and let the end-

user perceive the existence of blockchain, then this application is not essentially

different from the traditional centralized application.

When the blockchain does not support mobile terminals, it is still possible to build

the application on the blockchain and provide mobile terminal services, but this

requires additional third-party nodes for providing data transit services between

the blockchain and the mobile terminal. This way of introducing third-party nodes

3. Overall Design

006

BF
M

essentially introduces third-party central credit, which is against the original

design intention of blockchain decentralization. In a sense, when users cannot

directly participate in the blockchain, there is no essential difference from not

using the blockchain, and they still rely on central credit to provide services, and

this form of blockchain can only be called distributed chain database in a sense.

Therefore, blockchain must support mobile terminals, otherwise when users do

not perceive the positive meaning brought by blockchain, its will largely restrict

and limit the development of blockchain.

However, there are many problems encountered in the process of doing the design

of blockchain for mobile terminal, such as:

(1) Insufficient computing power of mobile terminals

(2) Unstable mobile networks and inability to stay online

(3) limited storage space of mobile terminals

Therefore, how to improve the overall architecture of blockchain has become a

challenge that must be solved to address mobile blockchain.

BFMeta has built a mobile-based blockchain system - BFS, known as Bioforest

Chain System, which breaks the constraint that traditional blockchain technology

must run on x86 PC and extends the application of blockchain to mobile terminals,

such as cell phones, tablets, smart wearable devices and IoT devices platforms.

BFS includes: core application components, core blockchain underlying

technology components, platform infrastructure and developer community.

1) Core blockchain underlying technology components: delegated DPOP

consensus mechanism, security mechanism, blockchain storage, chain duplex

3. Overall Design

007

BF
M

communication network, multi-chain architecture (cross-chain transactions &

blockchain evolution), etc.

2) Core application components: programmable contracts, programmable

assets, application framework core protocols, on-chain services, APIs and visual

development tools, etc.

3) Platform infrastructure: used to carry the basic requirements for the

operation process of blockchain systems, including Android, Windows, Linux,

UNIX, macOS and other operating systems.

4) Developer community: BFMeta DAO governance, toolkit download, tutorial

services, etc.

BFS Architecture

3. Overall Design

008

BF
M

Next, we will introduce the innovations of each technology of BFMeta mobile

blockchain system in detail.

3. Overall Design

3.2 Blockchain Storage Mechanism

3.2.1 RSD Storage Mechanism

Data storage capacity is the foundation of blockchain landing. Due to the

special nature of blockchain, it is impossible to pre-determine and require

participating nodes to provide large-capacity and high-throughput data storage

devices, so compared with traditional centralized IT construction, the following

considerations need to be added during the design.

1) Storage capacity

Traditional IT construction can require the provision of large-capacity disk arrays

to increase capacity or separate business and historical data to reduce storage

pressure and system performance pressure, but blockchain networks cannot be

accomplished by the above two methods.

2) Throughput Performance

In traditional IT construction, nodes can be required to adopt faster storage

devices such as high speed and SSD, or adopt Raid1 array disks and increase the

number of disks, or spread the throughput pressure to multiple nodes, or preload

data to memory, etc. to effectively improve the throughput performance, but it

does not work in blockchain scenario because most participating nodes do not

have these devices and conditions.

3) RSD Mobile Storage Mechanism

In the traditional IT construction, the system architecture is designed according

009

BF
M

to the centralized server, and in order to take into account the cost of the terminal,

the terminal does not participate in the business logic calculation, and the terminal

also does not store business data, so there is almost no need for mobile storage in

the terminal, and the small amount of storage is also user files and personal data

information that do not participate in the business logic operation. The traditional

storage design approach cannot be applied in the blockchain scenario.

Because of the practical difficulties, most blockchains still follow the traditional

IT construction idea in storage design, where data are stored centrally in the

participating nodes, and the terminal participants (such as mobile wallets) are

relayed through other participating nodes.

Problems of traditional storage ideas

1) Pseudo-decentralization

Because the terminal cannot directly access the blockchain, the actual data request

and business process are completed by other nodes, and the trustworthiness of

the data is guaranteed by whether the participating nodes cheat or not, which is

against the original intention of decentralization of the blockchain.

2) Pseudo-node

If the terminal cannot access the blockchain network, or if it accesses the

blockchain network but the data is incomplete, it will not be able to effectively

participate in the governance of the network (under the traditional consensus

mechanism). Although it looks like a node and can complete indirect

communication by means of bridging to a certain extent, it is still not considered a

qualified participating node.

3) Inability to participate in consensus

3. Overall Design

010

BF
M

When there is a missing terminal network and data, it will cause the terminal

to lose the basis of participation in consensus. Not being able to participate in

consensus often means not being able to participate in block building, and this

means that the rewards that accompany block building will not be available,

which is unfair in a sense to such terminals that contribute the same level of

participation.

BFMeta's proprietary RSD mechanism

We have redesigned the way we store blockchain data, and we call it Relational

Object Storage (ROS).

For the future development of the BFMeta ecosystem, to encourage more actors

and endpoints to access the BFChain network and receive fair rewards, we need

to design a solution that takes into account the access problems faced by different

endpoints and provides an effective and reliable solution. To this end, we first

proposed the concepts of The R-Node (real-time node), The S-Node (service node),

and The D-Wallet (distributed wallet) to support high-performance network

nodes and distributed service nodes, respectively, and to ensure that they can

also participate in the consensus mechanism, we redesigned the data storage

mechanism of the blockchain. In order to implement these concepts and ensure

that they can also participate in the consensus mechanism, we redesigned the data

storage mechanism of blockchain.

Multidimensional sharded storage

BFMeta metaverse data storage not only adopts multiple disks, but also adopts

the patented storage technology of "multi-dimensional slice expansion", which

allows data to be stored in large quantities while maintaining logical uniformity in

3. Overall Design

011

BF
M

the application layer. The data can be stored in huge amount, but it can keep the

logical unity in the application layer. The scaling technology enables qualitative

improvement of storage performance and lays a solid foundation for future

comprehensive commercial applications.

Memory image storage

In order to solve the problem of data retrieval efficiency, we introduced Mongodb,

a NoSQL database that is currently in common use, mainly using its fast retrieval

capability in the case of long chained data. Since it is not small in storage size and

not suitable for mobile, we adapted and integrated it with SQLite to allow nodes to

participate in consensus while remaining light in size, providing us with a basis for

fair rewards.

Checkpoint storage

In the RSD mechanism, two kinds of databases have their own division of labor,

and the modified one; for the mobile terminal that needs to participate in the

consensus, it needs to store part of the complete block data locally and participate

in the consensus mechanism through this part of data. In order to minimize the

amount of data stored in the terminal and the length of synchronization, we have

established the patented technology of "key checkpoint storage". The terminal

no longer needs business calculations and consumes additional calculation time

in the synchronization process, but only needs to store the block data after the

checkpoint. At the same time, it provides fast start-up capability in case of business

node failure. For the establishment of key checkpoints, we use the same consensus

mechanism as the block to complete.

3. Overall Design

012

BF
M

Hash tree storage

We use Mongodb to store block hash trees to provide fast identification of forking

issues during the execution of the consensus mechanism. The hash tree storage

is designed to allow the business to discard burden data during the computation

process, allowing direct computation without losing historical information.

Using photos and videos to record life is almost one of the necessary parts of

people's working life in modern society, and this numerous photo data we often

can't carry completely using portable devices, we generally use a cloud device to

store these photos and videos of us, but some of our photos and videos may involve

the confidentiality of our work and the privacy of our life, so that we are not so

comfortable to store in the public In this context, some solutions propose to use

offline encryption tools to encrypt photos and videos, but this in turn increases the

complexity of sharing these data within a specific range. In addition, since these

tools are still provided by the original organizations and the data is still stored

by the original organizations, to a certain extent, people can't completely trust

whether these tools are really encrypted or whether they have secretly stored an

3.2.2 Private Data Storage

3. Overall Design

013

BF
M

extra copy before encryption, which makes it difficult to promote the service of

private storage when there is a real demand for private photo and video storage.

There is still no real credible tool or platform for storing and sharing private

photos and videos, and other data such as financial data, diaries, memos, contracts

and other data with the same kind of needs are facing the same problem. So,

how to store and share private photos and videos securely without increasing the

complexity of storage and sharing is an urgent problem.

BFMeta provides a method and its device for secure storage and sharing of private

data, by creating group information and permissions, obtaining the group number

assigned to the group by the blockchain and assigning member account addresses

to the group number, encrypting the public keys of group members using ring

signatures and transferring the encrypted data to blockchain transactions,

completing the creation and assignment of group permissions, and when storing

When the private data is stored, the ring signature string of the group is obtained,

and the data to be stored is encrypted using the said ring signature string, and the

encrypted data is converted into blockchain transactions and submitted to the

blockchain, and when the data is read, the visitor's private key is used to decrypt

the data, and the decrypted data is restored according to the original data type,

which realizes the role of private storage and limited sharing of data. It solves the

problems of data leakage and data custodian's guarding and stealing.

In this era of information technology, data is everywhere, and it has become the

basis of our modern life and work, but with the development of information, there

are also a lot of negative incidents, such as unscrupulous service providers who

3.2.3 Distributed Storage

3. Overall Design

014

BF
M

sell users' privacy data professionally, and hacker gangs who specialize in stealing

users' data from major information platforms, and so on. In the face of such a data

crisis, there are quite a number of programs in the world that provide data security

protection, such as encrypted storage, and hosted storage; in the encrypted

storage program, since the data does not leak depends on the private key not to be

leaked, and the private key comes from the service provider, the service provider

to provide private key services in the process of strictly do not leak the private key

is a new data security problem; in the data hosted storage program, the security

of the data depends on the hosted storage In the data hosting storage program,

the security of data depends on the technical strength and moral quality of the

hosting party, and the repeated data leakage incidents of data hosting platform

make people gradually reduce their trust in the technical strength of the hosting

party, and the problem of custodian's guarding and stealing from time to time adds

to people's worries. The reason behind people continuing to use these services

despite the continuous data leakage incidents is that individuals cannot provide

such large storage capacity and cannot maintain a data service device that can

provide services anytime and anywhere. So how to provide a storage solution that

does not require personal maintenance, does not require third-party hosting, and

can provide very large scale storage capacity becomes an urgent problem to solve.

BFMeta builds a decentralized distributed data storage method by creating an

account on the blockchain and saving the private key, filling in the description

information of the uploaded resource, attaching the resource ready to be uploaded

as an attachment to a blockchain transaction, completing the upload of the

resource by processing the blockchain transaction that is reserved and placing the

transaction into the block; starting a node that is in the said blockchain, the node

obtains the local file distribution table, detects the blockchain network according

to the file distribution table, synchronizes the data resources on the network

with higher scarcity than local ones to the local file repository, and repeats the

3. Overall Design

015

BF
M

3.3 Blockchain Network Mechanism
3.3.1 Full-Link Duplex Communication Network

The blockchain network is the foundation for establishing the whole BFMeta, and

the traditional blockchain network basically adopts the socket method.

(1) Socket has the following characteristics

a. Rich component library, supported by programming languages from long ago,

such as cobol and c++ in the 1960s and 1970s.

b. Simple logic and easy development, only need to care about the content of the

transmission, not the underlying communication logic.

c. Different regional networks cannot interoperate directly and need additional

components to support them, such as GRPC.

(2) Problems of Socket

a. Weak autonomous control of network connections means that the data is real-

time and the efficiency of the transmission is difficult to control.

3. Overall Design

above steps to synchronize resources every day to complete the synchronization

of node resources; accounts that need to download resources select the needed

data resources for downloading by looking up the data resources in the network,

solving the problem of unlimited and reliable storage of data in the decentralized

environment. This solves the problem of unlimited and reliable data storage in a

decentralized environment.

016

BF
M

b. Socket-based applications cannot communicate directly with browsers,

which means that applications with Webkit as a core cannot directly access the

blockchain network.

c. The active communication capability for service-to-end is weak, and it is difficult

to establish an effective real-time push mechanism.

Higher standard BFMeta network

To achieve direct participation of mobile terminals in the consensus mechanism,

we have redesigned the communication domain. We redesigned the blockchain

P2P network, which we call it - Full Link Duplex Communication.

For the future development of BFMeta ecosystem, we need to design it in such

a way that any endpoint type can easily access us, while most of the current

blockchain networks still need a centralized server (e.g. mobile wallets) to provide

external services, so we put forward higher design requirements for BFMeta

--We redesigned the P2P network because there is no ready-made P2P network to

support this.

(1) Introduction of WebSocket mechanism

We introduced the WebSocket mechanism for the scenario of high real-time

requirements. It provides the basis for us to provide highly reliable and high-

performance BFMeta.

(2) Combination of "HTTP protocol" and WebSocket protocol

In addition, we have introduced the most widely used protocol on the Internet,

"HTTP protocol" (we will gradually upgrade to HTTPS later), which is combined

with the WebSocket protocol, allowing BFMeta's network capabilities to provide

3. Overall Design

017

BF
M

3.3.2 Node Addressing

With the emergence of Bitcoin, blockchain technology is increasingly recognized

as a new layer of infrastructure built on top of the Internet. In the future, there will

be countless network nodes in this facility, which are important components to

support business operations on the blockchain, and indicating specific operational

nodes for business is one of the necessary capabilities in a blockchain network.

However, in the actual business operation environment, we need to adjust the

actual running nodes of our business due to the limitation of IP allocation by

network operators, change of business usage, server scale adjustment, etc., and

after this adjustment, it will lead to the nodes that can find our business on the

blockchain can no longer find us. If we rely on a third party to find us, it will break

the peer-to-peer model of the blockchain and reduce the security; then how to

achieve a dynamic addressing capability within the blockchain network without

relying on any other third party, so that the business nodes can keep the business

continuity no matter how they change and always let the business nodes only need

to remember a name to always find us, becomes An urgent problem to be solved.

BFMeta builds a blockchain-based dynamic addressing method and its system, by

defining a name protocol for the blockchain, and then handling the business by

transferring the ownership and manager of the region, and when addressing is

needed, by updating the region where the business node is located and resolving

the corresponding region location, and then resolving the region address of the

3. Overall Design

efficient interoperability not only between nodes, but also across The network

capability of BFMeta not only provides efficient interoperability between nodes,

but also provides effective interoperability across regional networks and terminal

types, supports NAAS, and provides the basis for developing a truly distributed

application DAPP.

018

BF
M

originating business through this region, the business node can By using the inter-

chain protocol module and intra-chain protocol module in the protocol manager to

process the data of the blockchain nodes, and through the cooperation of the name

management module, ownership management module, sub-domain management

module and location resolution module in the region manager, the business

nodes can be dynamically addressed, which keeps the continuity of business

and improves the business. It maintains business continuity and improves the

processing performance of business nodes in the blockchain.

Blockchain is a new distributed infrastructure and computing method that uses

block-chain data structure to verify and store data, distributed node consensus

algorithms to generate and update data, cryptography to secure data transmission

and access, and smart contracts consisting of automated script code to program

and manipulate data.

Traditional data connection methods include Bluetooth connection, NFC

connection, AIRDROP connection, etc., but they can only exist between the device

that sends the data request and the device that is the target of the specific request,

and it is not possible for other nearby devices to establish a connection with third-

party devices and send data.

Therefore, it is an important research direction in the blockchain field to establish

the connection between devices other than the device sending the data request

and the third-party device and send the data successfully.

BFMeta builds a blockchain network transmission technology based on Bluetooth,

NFC, and AIRDROP, and builds a blockchain network transmission channel

3.3.3 Bluetooth, NFC, AIRDROP Network Transmission

3. Overall Design

019

BF
M

based on Bluetooth, NFC, and AIRDROP transmission, where any node on said

blockchain network is connected to the node that needs to send messages to

other devices by establishing a topological combination of Bluetooth, NFC, and

AIRDROP, but cannot When said node receives a request for sending data, said

node calculates the optimal data sending path based on the sending target address

and the local topology map and sends it; when the data finally reaches the sending

target, the data is sent, and the connection between other devices and third-party

devices other than the device sending the data request can be established and the

data is successfully sent, solving the problem of two devices that are not directly

connected in an Internet-free environment. This solves the problem that two

devices that are not directly connected to each other cannot exchange data.

3.4 Blockchain Evolution

With the emergence of Bitcoin, the application scenario of blockchain technology

is becoming more and more extensive. Most of the existing blockchains do not

support the structure of main chain and evolutionary chain, and the few that do

support evolutionary chain are actually different data of the same node. There

are some problems with this blockchain structure: for example, the absence

of evolutionary chain structure will likely lead to all future businesses being

placed on the main chain, which will result in all transaction bottlenecks being

backlogged on the main chain, thus leading to a low performance of the actual

performance assignable to each business; and the evolutionary chain structure of

the same node as the actual storage and processing are in the same node, which

will lead to the node becoming more and more massive in the future, and the

storage and transaction These problems will become especially prominent when

the blockchain carries a larger volume of business.

3. Overall Design

020

BF
M

BFMeta constructs a complete set of independent evolutionary chain operation

structure, that is, the main chain makes an exact copy of the node exactly like

itself, but does not copy the data and the genesis block, and then generates the

genesis block that has a dependency on the main chain according to specific

business rules, and sends all such business to the evolutionary chain for processing

thereafter, and the evolutionary chain is also deployed on an independent node

to run independently. This directly shares part of the business computation

and storage consumption to several different nodes, thus greatly improving the

business processing capacity and providing a basis for the unlimited expansion of

the total amount of computation capacity transactions of the whole network in the

future.

With the authorization of BFMeta Evolution Chain, enterprises can quickly

customize and develop different business evolution chains according to their

business needs and application scenarios to ensure the collaborative development

of their multiple businesses. For businesses that do not need to be completely on

the chain, enterprises can also selectively on the chain and independently develop

DAPP or embedded development on the main chain of BFMeta Biochain.

Each evolutionary chain on BFMeta is interoperable with the main chain, parallel

chains and other evolutionary chains, and combined with BFMeta's unique

cross-chain technology to realize cross-chain asset transactions between each

biological chain. These biological chains together form a living biomass - the

BFMeta multi-chain ecogroup. This group realizes that each evolutionary chain is

independent of each other and interconnected with the main chain, ensuring that

each chain thrives in the ecological soil (BFS mobile blockchain architecture). At

the same time, this group will continue to evolve and iterate and update with the

participation of developers and users all over the world to solve social problems.

3. Overall Design

021

BF
M

3. Overall Design

3.5 Cross-Chain Transactions

3.5.1 Cross-Chain Network Interconnection

With the emergence of Bitcoin, the application scenario of blockchain technology

is becoming more and more extensive. In the current blockchain design, all kinds

of chains are running independently, and chain A and chain B do not intersect with

each other and do not communicate with each other, even though a side chain type

of technology is used to achieve logical interoperability between chains, there is

actually no real data communication between the two chains, but the third C chain

is used to establish relationships with A and B respectively to achieve This design

has two problems, one is the waste of resources and the other is the inefficiency.

BFMeta constructs a cross-chain network interconnection method, which is mainly

used to solve the interoperability problem between different chains. The different

chains referred to here include two completely different types of chains, and a

main chain, evolutionary chain chain, and side chain of the same type of chain;

the interoperability referred to here is the network-level interoperability.

The core design idea of cross-chain network interconnection is to create a generic

network layer adapter for different chains and establish the processing logic for

each chain in the adapter. This network adapter allows nodes of the same chain

to keep their existing work unchanged among themselves, but when it explicitly

specifies the need to interoperate with other chains, it sends data directly to

the nodes of other chains directly. In addition to explicitly specifying the data

sending direction, the network adapter can also play the role of an invisible

network highway, because when the first node of the first chain needs to send

data to the second node of the first chain, it may happen that these two nodes

cannot interoperate directly in different networks, then with the use of the present

022

BF
MBlockchain is the most important infrastructure in the future credit era, and

this infrastructure will be composed of many blockchains, then cross-chain data

interaction and cross-chain asset transfer among many blockchains will be a

necessary and important part. A single blockchain is originally independent and

fully autonomous, but once cross-chain is involved, it may need to rely on the

reliability of other chains. chain, it will reduce the reliability of the cross-chain

data or assets of the other chain, and if it relies on the other chain, it will reduce its

own reliability. The trade-off of reliability in the process of cross-chain interaction

of blockchain seems to be an unsolvable problem, and in the future there are

bound to be numerous blockchains, and the demand of cross-chain becomes rigid,

so how to ensure the reliability of cross-chain interaction data or assets without

decreasing its own reliability becomes an urgent problem to be solved.

In order to solve the problem of conflict between cross-chain reliability and its

own reliability, BFMeta introduces an in-chain granting mechanism, which is to

confirm whether overdraft is allowed or not based on the number of confirmed

3.5.2 Cross-Chain Decoupling

3. Overall Design

invention, the first node of the first chain can send data to the second node of the

first chain with the help of the With the present invention, the first node of the

first chain can relay data with the help of a node of the second chain that has a

common connection with the second node of the first chain, and it does not care

about the existence of the second chain in the processing logic of the first chain.

BFMeta not only realizes cross-chain network interconnection, but also solves

the problems of low probability of network interoperability, poor efficiency, and

duplication and waste of equipment.

023

BF
M

blocks of cross-chain data in the chain, and wait for the recovery of cross-chain

network reliability during the overdraft period, and if the overdraft exceeds

the waiting time, then all transactions down the link will be prohibited, but the

transactions of its own chain If the overdraft exceeds the waiting time, then all

transactions down the link will be disabled, but the transactions of its own chain

will continue to be processed normally until the cross-chain network resumes

confirming the current overdraft transactions and then resumes the transactions

down the link.

BFMeta's in-chain granting mechanism is to assume trustworthy processing of

data that has been confirmed in more than 1 block when the other party is down

or gone, and to negatively account for assets that are assumed to be trustworthy

overdraft, and to list the outstanding debt. Waiting for the other party to finish

rebuilding itself and the outstanding debt is greater than 0 starts waiting for the

other party to buy the bill. When the other party has not finished buying the bill,

all the new cross-chain transactions added by the other party are queued up after

the buy transaction, and when the other party confirms the bill one by one, then

starts processing the new transactions. In this way, no matter whether the other

party is in normal status or not, it does not affect its own past verification and

future transactions, and at the same time, it does not reduce the reliability of cross-

chain data. For if there is still a need to continue cross-chain transactions, it is only

necessary to clear all the previous outstanding bills list. That is, it can guarantee

the reliability of both, and release the interdependence of both, and solve the

coupling between cross-chains.

3.5.3 Cross-Chain Asset Interchange

Digital assets are an important part of blockchain, and different blockchains often

carry different digital assets. In actual business scenarios, it is often necessary to

3. Overall Design

024

BF
M

exchange assets between different blockchains, and this exchange often becomes a

difficult problem; in order to minimize the exchange of assets between chains, the

current common solution is to establish a third blockchain to establish exchange

relationships with the parties that need to exchange assets respectively, and then

only indirectly exchange assets. In order to minimize the asset exchange between

chains, the current common solution is to establish a third blockchain to establish

an exchange relationship with the parties that need to exchange assets respectively

before the asset exchange can be carried out indirectly, which increases the steps

of exchange, prolongs the time of transaction, increases the complexity of related

business, and prevents the further development of upper layer applications due

to the additional third chain, and the probability of the three chains working

consistently and stably in the actual operation is much lower than the original two

chains, so there are almost no real applications landed so far; later on Some new

chains, in order to avoid similar problems to the greatest extent, tend to adopt

some kind of best practice standard, and the standard also leads to a group of

chains with almost the same overall structure, and there should have been a better

way to exchange and circulate the assets on these chains, but it has not appeared

yet either; Then how to design an asset exchange between different blockchains

without relying on a third chain becomes an urgent problem to be solved.

BFMeta builds a method to circulate assets among multiple blockchains, including

the steps of exchanging new assets across chains, circulating the transferred new

assets in the local chain, and transferring the transferred new assets back to the

original chain again. The transfer of new assets back to the original chain also

includes the sub-steps of establishing connection, confirming transactions and

validating assets.

The core of BFMeta cross-chain transaction is to establish a micro-asset issuance

channel between different blockchains. When there is a need for cross-chain asset

3. Overall Design

025

BF
M

transactions, the counterparty assets will be issued as new assets of this chain

and the assets of this chain will be frozen, so that the assets of other chains can

circulate in the original chain and in the new chain to achieve real cross-chain

asset circulation, and at the same time, the total amount of original assets can be

kept unchanged.

1) The core function of the asset approver is to confirm the validity of the assets

and manage the total amount of assets. There are two core modules in the asset

approver, the asset detection module and the asset accounting module. The asset

detection module is used to verify the availability and authenticity of assets based

on local configuration; the asset accounting management module is used to

manage all cross-chain assets of this chain and the allocation and usage.

2) The core role of transaction manager is to help two chains reach a common

asset cross-chain status. There are two core modules in transaction manager,

asset credential management module and transaction status synchronization

management module. The asset credential management module is used to confirm

and keep the source of cross-chain assets; the transaction state membranes

management module is used to collaborate with both parties to complete the

issuance confirmation of new assets.

3) The destruction of the freezer is used to ensure that the global total of the

assets can be maintained after the assets go to other chains. The core function

of the destruction freezer is to keep the global total of the chain intact. There are

two core modules in the destruction freezer, the asset freezing module and the

asset destruction module. The asset freezing module is used to freeze the assets

of the chain when new external assets enter the chain, so as to ensure that the

total amount of the chain's assets remains in the original state after they go out;

the asset destruction module is used to destroy external assets when they are

3. Overall Design

026

BF
M

3. Overall Design

3.6 Three-Layer Blockchain Architecture

With the emergence of Bitcoin, blockchain technology is increasingly recognized.

The current blockchain structure is inconvenient to use for business scenarios

and business authorization with huge data volume, especially for retrieval and

verification, which often takes a lot of time to retrieve, and many of them are doing

useless retrieval. The current blockchain architecture is to carry these data in one

blockchain, so the speed of verifying and retrieving lottery tickets will be very

slow, because it needs to retrieve data of all outlets, all lotteries and all issues in

the country to get the information to be verified and retrieved.

BFMeta provides a three-layer blockchain architecture that is fast in retrieving

and verifying data, and easy and fast to use to solve the tedious retrieval and

verification. It consists of.

(1) building a chain for product-level authorization of issuance, where the issuance

chain signs and authorizes each product.

(2) constructing an authorization chain for participant authorization, where the

issuance chain authorizes the generation rights of the corresponding products

to the participants in the authorization chain; the authorization chain performs

signature verification for each participant.

(3) Construct a production chain for recording actual production operation data,

transferred back, and at the same time release the chain's assets, so as to ensure

that the total amount of the chain's assets remains in the original state when

external assets are transferred out.

027

BF
M3.7 Big Block

The blockchain based on the Bioforest chain system is able to forge blocks

containing rich information, thanks to the algorithms we use such as memory

image type storage, multi-process processing of events, and matrix broadcasting,

which enable massive events to be processed in a short time, and the forger

will sign each event during the process. After the successful forging, we will

broadcast the block header to the blockchain network, and other nodes will

enter the synchronization process after receiving and verifying the block header

information. Since the synchronization of big blocks will consume more traffic

and arithmetic power, we have designed some strategies to ensure the stability

of the nodes when they are synchronized, following the principle of first request

first synchronization to ensure the stability of the nodes while providing efficient

services to the outside world. When some nodes have already synchronized to the

block, they will also broadcast to other nodes, so that other nodes can share their

resources as well.

3. Overall Design

and piggyback the signed participants' production operation in the production

chain.

By separating the technical responsibilities of different steps through a three-layer

blockchain, the verification and retrieval of correctness are taken out from the

massive data, thus significantly improving the performance of blockchain when

verifying and retrieving on massive data applications, increasing the speed of

retrieval and verification, and making it easy and fast to use.

028

BF
M

3. Overall Design

3.8 Address Private Key Management Mechanism-My
Secret

We have redesigned the management mechanism of address private key, which we

call My Secret.

The private key is the bottom line to ensure the rights and asset of users. In most

blockchains, each user has a pair of public key and private key, and because

the private key string is irregular and also long, resulting in almost no user will

directly remember this private key, more often it is saved to an album in the form

of a picture QR code, or directly by a third-party wallet service provider for unified

storage, which can obtain some direct benefits.

(1) It is convenient for users to transfer and keep it in the form of QR code.

(2) The advantage of unified storage by the third-party wallet service provider is

that the user only needs to remember the password set by the service provider.

Along with these benefits, there are some hidden dangers:

a. Images can be easily lost.

b. Third-party service providers may face problems such as security loopholes,

closing down, and supervisory theft, which essentially exchange the credit of

the wallet service provider for the wallet key, defeating the original purpose of

blockchain decentralization and de-credit intermediation.

In order to provide convenient key management on the basis of key security, we

designed "MySecret", which uses a custom long secret message as a seed (it can be

a favorite line, a song, a poem), and then the key will be stored in the key. The key

029

BF
M

3. Overall Design

3.9 Automatic Upgrade

In the era of Web 2.0, it is common for an application to be upgraded and updated

due to certain bugs or new features. Like all applications, blockchain also needs to

be upgraded to keep up with the times. However, blockchain upgrades are much

more difficult than regular software upgrades:

a. Upgrading a traditional blockchain requires forking the network, such as

Ethernet switching the consensus mechanism from PoW to PoS, which can only be

achieved through a hard fork.

b. At the same time, the upgrade work requires preparations ranging from months

to years to complete.

BFMeta revolutionizes this process, enabling blockchains to be able to upgrade

themselves without the need for forked chains. These forkless upgrades are

achieved through BFMeta's open and transparent on-chain governance in which

everyone participates. With this feature, BFMeta enables projects to remain agile,

adapting and evolving with technology. It also significantly reduces the risks

associated with a controversial hard fork.

is encrypted and put into the on-chain key safe. It solves a series of problems such

as traditional cipher with few bits and low strength that can be easily cracked, the

original key characters are messy and meaningless and hard to remember, and the

third-party central custodian (such as blockchain.info) is unreliable, so that users

can really use keys safely and conveniently in a decentralized environment without

using other third parties.

030

BF
M3.11 Distributed Computing

With the development of the Internet era, the requirements for information

technology are getting higher and higher, and more and more scenarios require

the use of computers for computing, while the computing capacity of a single

computer is always limited, in practical applications often use the form of clusters

for computing, but this often requires the institution or individual building the

cluster to have a certain initial economic strength, using economic strength to

turn to the scale of the cluster, thus improving the overall computing capacity But

not all organizations have a certain scale of economic strength at the beginning

of the business, in addition even if a certain scale of cluster computing capacity

is built, but does not always need such a large computing capacity, often in some

sudden business only need a very high peak computing demand, in most of the

time are only low-load computing needs, so in the actual business scenario, build a

3. Overall Design

3.10 Fork Merging

In the BFMeta, when legitimate blocks with different hashes appear at the same

height, the blockchain will create a temporary fork, at which point the network

is able to quickly identify and perform a rollback merge based on consensus

rules. The confirmed transactions in the rolled-back blocks are also rebroadcast

to the network. The block fork consensus rules follow the block participation >

accumulated fees in the block > block signature to select the block to be applied.

The participation is determined by the transactions confirmed in the block, and is

calculated as follows: changes in asset within the block * consensus asset weight

+ number of transactions confirmed in the block * consensus transaction weight,

where the consensus weight is specified in the Genesis block.

031

BF
M

large-scale computing capacity Therefore, it is not a cost-effective solution to build

large-scale computing capacity to meet the occasional peak computing demand

in real business scenarios. Currently there are some solutions on the market to

solve the problem, such as cloud computing, the demand side can increase or

decrease the cloud server at any time according to the business and performance

needs, this way to a certain extent to solve the problem of large initial investment,

performance can be flexibly configured, but still only simplifies the problem of

building a convenient and flexible computing capacity, and does not solve the

problem of flexible allocation of computing resources according to the demand for

computing capacity. Then how to provide a truly flexible allocation of computing

resources without a one-time large-scale investment and elastic computing

resource allocation scheme has become an urgent problem to solve.

BFMeta invents a blockchain-based distributed computing method, including

computing task definition, computing task distribution and computing task

execution, where computing task definition includes task information entry

and processable task type registration, computing task distribution includes

data disassembly and node connection, computing task execution includes task

information acquisition and task execution. The beneficial effect of this invention

is to realize decentralized elastic distributed computing, which solves the problem

of large-scale distributed computing and waste of idle resources.

3. Overall Design

032

BF
M

4. Consensus Protocol
4.1 Consensus Algorithm of BFMeta
4.1.1 TPOW+DPOP

Consensus mechanism is the soul of blockchain, which is the necessary means

for blockchain network to reach agreement in a decentralized and distributed

environment.

Advantages of current consensus mechanisms

(1) Proof-of-work mechanism POW

The node with the strongest arithmetic power generates the block, which can

effectively increase the cost of evil; the difficulty enhancement strategy reduces the

probability of any multiple blocks on the blockchain being rewritten at the same

time by technical means to negligible.

(2) Proof-of-Stake mechanism POS

The competition of playing blocks by the nodes with the largest stake can avoid

the waste of computing resources and make the cost of evil-doing directly related

to its stake, which reduces the probability of evil to a certain extent by means of

business.

(3) Practical Byzantine Fault Tolerance Mechanism PBFT

By all nodes in the network to participate in voting, voting less than (N-1)/3 nodes

opposed to reach agreement and generate the block, this mechanism is practical,

efficient, less waste of resources and scalable.

As time goes by and the business diversifies deeper, these consensus mechanisms

4. Consensus Protocol

033

BF
M

with obvious advantages start to show symptoms of overwhelm and exhibit

obvious drawbacks in specific scenarios.

Problems of various current consensus mechanisms

(1) Wasted computational power

In the proof-of-work mechanism POW, only the nodes with the most computational

power can generate the blocks, which leads to a huge waste of computational

power and prevents the general public from truly participating in the consensus of

the nodes.

(2) Concentration of stake to the top

In the proof-of-stake mechanism POS, the larger the stake is, the higher the

probability of being eligible to generate the block, and generation the block means

a reward, which leads to the mutual promotion of "getting a reward to increase the

probability of generation the block" and "increasing the probability of generation

the block to get more stake", resulting in small This leads to the marginalization of

the nodes with small stake and the loss of the right to participate in consensus.

(3) Low cost of evil

In Byzantine fault-tolerant mechanism, since all nodes can participate in

consensus voting, this will lead to the weakening of the business properties

represented by their votes, and a node without stake will have almost no cost of

evil in the consensus process.

Consensus mechanism specific to BFMeta

We redesigned the participation-based TPOW (Transaction Proof of Work) + DPOP

(Delegated Proof of Participation) + DPOS + PBFT consensus mechanism.

4. Consensus Protocol

034

BF
M

We redesigned the TPOW+DPOP+DPOS+PBFT consensus mechanism based on

the degree of participation, which not only inherits the business attributes of

POS, the efficient attributes of DPOS, and the full participation attributes of PBFT,

for the sake of the sustainable development of BFMeta ecology, but also for the

sake of higher reliability of BFMeta data and effective avoidance of the problems

arising during the development of the existing consensus mechanism. In addition

to effectively inheriting the business properties of POS, the efficient properties of

DPOS, and the full participation properties of PBFT, it can also effectively avoid the

problem of low cost of collective evil by nodes with no stake and high stake, and

also provides a basis for The D-Wallet terminal to participate in consensus.

In this consensus mechanism, participating nodes not only need to provide proof

of stake, but also proof of participation, where The R-Node obtains participation

by providing highly reliable network performance, and The S-Node obtains

participation by providing terminal services, and each participating node's activity

on the network increases its participation to a certain extent, and the increase

of participation is based on obtaining the service signature of the served This

ensures that participants of different dimensions can participate in the consensus

and governance of the network, thus effectively avoiding the shortcomings of the

single-dimension consensus mechanism.

DPOP Consensus Algorithm

The DPOP consensus mechanism is determined by the amount of stake and

participation, and the forger is determined by the number of votes in each round

of voting. The forger for the next round will be selected in the end-of-round block

based on the number of votes, online rate, and public key order, where the number

of votes is the first element.

4. Consensus Protocol

035

BF
M

Example of consensus mechanism code (partial):

 Calculate the number of votes (number of stake, number of transactions) for an

address {

 const participation = number of transactions * participation ratio * end-of-round

constant

 const total number of votes = number of stake * proportion of stake + participation

 return total number of votes;

}

The above formula is able to derive the number of votes for the address. With the

votes, the address can participate in the on-chain governance and provide votes for

the nodes, and the address can also receive governance rewards.

TPOW Consensus Algorithm

TPOW (Transaction Proof of Work) refers to the proof of workload of a transaction.

It means that a transaction is on the chain, not with zero computational cost, and

needs to be supported by a certain amount of arithmetic power to be submitted to

the chain. Usually, when we talk about proof of work, we think of it as a big "power

consumer", but in TPOW, this is not the case. Generally, TPOW does not affect

the daily on-chain transactions of ordinary users, but through the configuration

of parameters, its threshold is often dynamically deployed based on the number

of asset in the address and the number of activities in a period of time. The more

stake an address has, the higher the trigger threshold for TPOW.

Its presence will only have an impact on hackers who want to launch attacks

on the blockchain in a short period of time, solving unlimited low-cost DDOS

attacks. Ordinary users more often than not do not really need to provide the

4. Consensus Protocol

036

BF
M

arithmetic example, but only need to wait online to the TPOW algorithm in the

time parameter as time passes and slowly back down the difficulty can be. So also

indirectly will allow users to have more online time proof to contribute part of the

distributed network, making normal use and a large contribution to the ecology of

the user to obtain governance priority.

4.1.2 Miner Protocol

4.1.2.1 Authorized Creation Protocol

4.1.2.2 Genesis Basic Protocol

4.1.2.3 Consensus Incentive Agreement

Authorized Genesis Protocol, refers to the protocol corresponding to the Genesis

block, which is signed and generated by the generator of the Genesis block. The

authorization protocol is mainly to mark the capabilities that this node can obtain,

which covers the maximum number of nodes, the maximum TPS, the range

of events allowed to be processed, and the assets allowed to be circulated. The

authorization is not verified when the block is synchronized, while it is validated

when the block is forged. It also means that this authorization file will be able

to customize the capabilities of the nodes. In the public chain, we provide full

authorization for all nodes by default.

Genesis basic protocol refers to the basic information of this chain, including

chain MAGIC, chain name, master asset name, Genesis address, etc.

The Consensus Incentive Agreement, refers to the revenue generated by each

block forging as the blockchain advances and the distribution rules for voting and

4. Consensus Protocol

037

BF
M

forging, which we define in the Genesis block. In BFM, the block forging reward

is 40 for the first 20 years, and 20 for each subsequent block; the ratio of allocation

and forgers to voters in each block is 4:6

The block forging protocol refers to the forging interval and the number of blocks

per round. BFMeta has a forging interval of 64 seconds and a round of 57 blocks.

The last block of each round is the end-of-round block. In the end-of-round block,

we calculate the required checkpoint data to be generated for each round by the

algorithm.

The contract execution protocol means that some of the event parameters in this

chain will be determined by the protocol of the creation block. For example, the

minimum asset value required to issue assets, register the chain, the maximum

number of bonus events that can be issued, and other configurations.

The event processing protocol refers to the protocol about the processing

capability of events in this chain, including the maximum validity, maximum TPS,

maximum size of a single event, and the minimum handling fee consumed per

byte.

The proof-of-algorithm protocol specifies the rules for the TPOW parameters of

4.1.2.4 Block Forging Agreement

4.1.2.5 Contract Execution Protocol

4.1.2.6 Event Processing Protocol

4.1.2.7 Proof of Algorithm Protocol

4. Consensus Protocol

038

BF
M

The blockchain consensus port for this chain is defined here. Other ports are

configured in the configuration file.

We have improved the mechanism for competing to generate a block, which we

call it - CABP (Competitive Accounting Based on Participation based competitive

bookkeeping mechanism). Blocks are the basic units that make up blockchain

data, and the block generation strategy will directly affect the performance of the

blockchain network and the rights and asset of participating nodes. Traditional

blockchain's block generation blocks have some characteristics.

a. Participating nodes with complete data can only participate in block generation.

b. The participating node with the most arithmetic power or the highest asset can

only participate in the block generation.

c. In most consensus mechanisms, only the block generation can gain.

These features pose some immediate problems.

a. Solving the data reliability problem in terms of data integrity also constrains the

4.1.2.8 Network Communication Protocol

4.2 Block Forger (Miner Node) Rotation

4.2.1 Multi-Node, Multi-Process Block-Generating Method

4. Consensus Protocol

the BFMeta. The higher the difficulty of the TPOW, the more difficult the events

processed per unit block. The difficulty of TPOW can be reduced by increasing the

address participation, thus processing more events per unit block.

039

BF
M

participation of lightweight nodes.

b. The use of arithmetic power and asset alone as the basis for generation blocks

will lead to long-term development hindrance, and there will be significant

resource concentration and stratification.

c. The fact that the only way to gain revenue is to participate in blocking will

discourage nodes from contributing to participation in other ways.

By summarizing the problems caused by the traditional blocking method, we have

improved the mechanism of blocking based on a longer-term consideration, in

which arithmetic power and asset are no longer the only criteria for judging, and

we have introduced more dimensions, such as stability, activity and transaction

volume, so that all types of participants can participate in the blocking process,

which will facilitate BFMeta to attract all kinds of players and thus enrich the

participant ecology. We have improved the mechanism of playing block rewards,

we call it - BPIM (Based on Participation Incentive Mechanism).

Rewards are necessary to sustain the blockchain network. The science of reward

mechanism design will promote the prosperity of the blockchain network and in

turn will constrain the development of the blockchain network. There are roughly

two ways of rewarding in traditional blockchain networks:

a. Receiving block rewards by competing to generate blocks.

b. Receiving transaction fees by participating in transactions.

These two ways are simple in logic and easy to implement, but have some

problems in later development:

4. Consensus Protocol

040

BF
M

a. Participating nodes with low competitive ability cannot get block rewards, which

may be unfair to participating nodes that have contributed other participation.

b. Transactions by fees will bring about fee discrimination, and the generation

block nodes may prioritize transactions with high fees in order to ensure their own

revenue.

In order to solve the problems caused by the traditional reward mechanism,

BFMeta introduces a multi-dimensional reward mechanism, we design the R-Node

(real-time node), the S-Node (service node) and the D-Wallet (distributed wallet).

The R-Node and the S-Node can switch between each other or work simultaneously

according to the network environment or participants' wishes, so that contributors

of different dimensions can be rewarded. The R-Node and the S-Node can

switch between each other or work simultaneously depending on the network

environment or participants' wishes, allowing contributors of different dimensions

of participation to be rewarded.

In the reward distribution, both the rewards earned through asset and the

participation provided will be rewarded and distributed when the block is played

(the block will also be distributed when it contains a fee). Each service node will

increase the weight of the service node to obtain the reward, so as to encourage

the access of service nodes when there are few service nodes, and encourage real-

time nodes to provide more efficient service nodes when there are enough service

nodes, thus dynamically balancing the BFMeta network from multiple dimensions

through a multi-dimensional reward mechanism.

4. Consensus Protocol

4.2.2 Block Forger Election Algorithm

Block forgers, those nodes in the BFMeta network that are responsible for

041

BF
M

4. Consensus Protocol

collecting event information and packing it into blocks (i.e. miners). In addition to

having the characteristics of a normal node, a block forger is responsible for:

a. Collecting events in the network.

b. Validating events and packing them into blocks.

c. Broadcast the block to other nodes and add the block to their own local block

chain after passing the validation.

In the BFMeta network, there are 57 block forgers in each round, and the BFMeta

block forgers are selected based on a combination of parameters such as the

number of votes received by the trustees and their online rate.

The process involves three main parts in the generation of block forgers:

a. Nodes participate in the campaign

	 a) Becoming a trustee

	 b) Opening to receive votes and block forging

Flow Chart of Campaign

042

BF
M

In order to improve consensus efficiency, in the BFMeta blockchain ecosystem,

address accounts can apply to become trustees as long as they hold asset in the

main chain. All address accounts can vote for the trustees who have opened to

receive votes, and the system will elect 57 trustees from them according to certain

algorithmic rules. These 57 trustees, or block forgers, will be responsible for

forging the next round of 57 blocks.

In the BFMeta ecology, there are two main types of trustees as follows:

a. Ordinary trustees: Ordinary address accounts become trustees by application.

b. Genesis Trustees: Address trustees bound to the Genesis block, currently there

are 114 Genesis Trustees.

On-chain rules

a. Registering as a trustee is an event that requires payment of a certain on-chain

fee, so only accounts holding asset in the main chain can apply to become trustees.

b. By default, a maximum of 10 "registered trustee" events are confirmed in each

round; if there are more than 10 "registered trustee" events in that round, the

4.2.2.1 Becoming a Trustee

4. Consensus Protocol

b. Address accounts holding asset vote on trustees

c. Becoming a forger

	 a) Enter the candidate zone

	 b) Become a Forger if the campaign is successful

043

BF
M

events after the 10 confirmed events will be queued until the next round block

forging begins before they can be confirmed.

c. Only when a node becomes a trustee can it enter the candidate zone, so that it

has the chance to be selected and become a forger.

d. Support a node to bind multiple trustees at the same time.

4.2.2.2 Receiving/rejecting Votes

After the address account successfully applies to become a trustee, it also needs to

be configured whether to participate in the forger campaign (i.e., receive votes),

and the default is to reject votes. Participating in the forger campaign means that

other nodes on the chain will potentially vote for this trustee, then, it is possible

that it will be selected to become a block forger.

It should be noted that if a trustee is lucky enough to be selected as a block forger

and is unable to forge a block because the node is not ready when the block is

forged (e.g., the block height is not finished synchronizing, the node network is

unstable, the node is in the process of upgrading and updating, etc.), it will affect

the trustee's next campaign and greatly reduce the probability of being selected

subsequently. In order to reduce the dropout rate of trustees, it is recommended

to first refuse to participate in the forger campaign (i.e., refuse to vote) when the

node is not ready, until the node is ready, and then turn on receiving votes.

4. Consensus Protocol

044

BF
M

Voting means that all address accounts on the chain holding asset in the main

chain can vote on trustees in various supported DApp (e.g. BFMeta App) or node

programs. The more node votes a trustee gets, the higher the probability that it will

become a forger.

The voting-related rules are detailed in the chapter on consensus voting

mechanism, and will not be repeated here.

The nodes on the chain vote for the trustees involved in the election by

participating in voting (automatic and manual voting) with the votes obtained in

their hands. The bottom layer will count all the trustees that were voted in this

round at the end of the block of this round. Those Trustees who have been voted

for and recommended will enter the Candidate Zone, and the system will select

the 57 Block Forgers for the next round from the Candidate Zone according to the

election rules of the bottom tier (see "Becoming a Forger" section below).

How to improve the probability of entering the candidate zone?

a. Increase the online rate

b. Increase the number of blocks forged

c. Increase the number of packaged deals

d. Increase the percentage of votes received

e. Re-register as a new trustee

4.2.2.3 Address Account Voting on Trustees

4.2.2.4 Automatic Node Voting

4.2.2.5 Entering the Candidate zone

4. Consensus Protocol

045

BF
M

Campaign Consensus

a. Only trustees (hereafter called candidates) who enter the candidate zone may be

selected to become forgers for the next round of blocks.

b. The system will select 57 from the candidates according to the established

consensus of the bottom layer as the block forgers for the next round.

c. The underlying rules, which depend mainly on the following two parameters:

	 a) Number of votes received: i.e., the number of votes received by the

 candidates in the current round of voting.

	 b) Online rate: online rate = number of forged blocks / (number of forged

 blocks + number of drops); once a node has had one drop, the online rate

 will not return to 100%, but as the number of forged blocks keeps

 increasing, its online rate can be infinitely close to 100%.

d. Judgment method

	 a) Priority comparison of votes: the number of votes received is compared

 first: the higher the number of votes received, the more likely the

 candidate will be selected.

	 b) If two candidates have the same number of votes, then compare the

 online rate: the higher the online rate, the more likely to be selected.

4.2.2.6 Becoming a Forger

4. Consensus Protocol

046

BF
M

For example:

Candida

te

Number of

forged blocks

Number

of

dropped

lines

Online

rate

Number

of votes

received

A 70 30 70% 100

B 90 10 90% 99

C 85 15 85% 100

D 100 0 100% 50

4. Consensus Protocol

In the above table, the probability of each candidate being selected in descending

order is: C > A > B > D.

How to increase the online rate

a. Reduce the number of dropouts: Try to avoid being selected to forge a block

when the node is in the following states: not finished synchronizing, the node is

in the upgrade period, the node itself is not ready. If a node is found to be in one

of the above states, the trustee can turn off receiving votes by triggering a "reject

vote" event. After the "reject vote" event takes effect, the node bound trustee will

no longer be voted, and its probability of being selected will be greatly reduced.

047

BF
M

4. Consensus Protocol

b. Increase the number of forged blocks: Nodes should participate in block forging

as much as possible to get more forged blocks. Once the number of blocks forged

by that node is much larger than its dropouts, then its online rate will remain high,

even infinitely close to 100%.

Initial Forger

The BFMeta initial forgers (i.e., the block forgers in the first round) are elected

from the 114 Genesis trustees according to the underlying campaign consensus

(as above). Each subsequent round of block forgers will be elected through the

campaign process described above.

4.2.3 Consensus Motivation

4.2.3.1 Consensus Incentive Mechanism

The consensus incentive mechanism is an incentive for miners who provide

arithmetic, network, storage, verification and packaging services to the BFMeta

network, as well as for all address accounts that provide arithmetic, network and

storage to participate in the BFMeta voting governance.

Currently, the incentive for successfully forging a block in the BFMeta consensus

incentive mechanism can be divided into two components.

a. Granting a certain amount of asset in the main chain

b. The uplink fee generated by all events in the currently forged block

048

BF
M

4. Consensus Protocol

Those who can receive this incentive include:

a. The forger of the block, who can receive an incentive of 40% of the total

incentive of the block.

b. All address accounts that voted for that forger in this round, which can receive

an incentive of 60% of the total incentive for that block.

Blockh eight Number of asseti ncentivized (BFM)

1- 9855000 40

9855000 - 20

4.2.3.2 Total Incentive Received for Forged Blocks

In the BFMeta network, after each successful forging of a block, the bottom layer

will calculate the total incentive it should receive, as follows

totalReward = rewardPerBlock + sum(eachtransactionfeeOftheBlock)

where:

a. rewardForPerBlock: that is, the main chain asset incentive granted by forging

this block. In the BFMeta consensus, the number of asset for this incentive will

vary with the block height interval, as follows:

049

BF
M

b. sum(eachtransactionfeeFortheBlock): where eachtransactionfeeFortheBlock

is the upload fee of each event packed into this block; sum(eachtransactionfee

FortheBlock) is the sum of the upload fee of each event packed into this block.

eachtransactionfeeFortheBlock.

The total incentive of the forged block will be shared between the block forger and

all address accounts that voted for the forger in this round. The consensus rules

for sharing are:

a. The block forger will share 40% of the total incentive to forge the block, i.e.

totalReward * 0.4

b. All address accounts that voted for the forger in this round will share a total of

60% of the total incentive to forge the block, i.e. totalReward * 0.6.

c. The incentive to be shared by each address account that voted for the forger is:

totalReward * 0.6 (the number of votes the address account voted for the forger in

the previous round / the total number of votes the forger received in the previous

round)

4. Consensus Protocol

4.2.4 Voting Algorithm

The BFMeta block forgers are selected based on the number of votes received by

the trustee and the online rate and other parameters according to the underlying

consensus rules (see Block Forger Campaign for details).

The number of votes received by the trustees is obtained by voting for the trustees

who have turned on receiving votes through the accounts of addresses holding

asset in the main chain across the network.

050

BF
M

4. Consensus Protocol

All address accounts on the chain that hold main chain asset can vote for trustees

in various supported DApps (e.g. BFMeta APP) or BCF node programs. The more

votes a trustee receives, the higher the probability that he or she will become a

forger.

This chapter will introduce the voting rules of BFMeta in five parts:

- Getting votes

- Voting automatically

- Manual voting

- Voting incentive allocation

- End-of-round calculation

4.2.4.1 Getting Ballots

A ballot is a ticket used by an address account on the chain to vote for a trustee. An

address account can only vote for a trustee if it obtains a ballot.

In order for an address account on the chain to obtain a ballot, it needs to ensure

that

a. the address account holds an asset in the main chain

b. Voting governance is turned on and has been online for 6 consecutive hours (i.e.,

online for three consecutive rounds)

The consensus formula for the number of votes (for the next round of voting) that

an address account can obtain in each round is:

The number of votes an address account can receive in each round = balance

051

BF
M

4. Consensus Protocol

balanceWeight + numberOfTransaction numberOfTransactionWeight * Rate

Where:

a. balance: the main chain asset owned by the address account as of the previous

round.

b. balanceWeight: the weight of the main chain asset, constant, the Genesis

consensus default is: 5000.

c. numberOfTransaction: the number of events that have been confirmed in the

last round for the address account.

d. numberOfTransactionWeight: event volume weight, constant, Genesis

consensus default: 1.

e. Rate: max(mainchain asset of each address account participating in the last

round)/max(number of confirmed events for each address account participating in

the last round).

BFMeta will count the number of votes each account has in the next round at the

end of each round block.

4.2.4.2 Automatic Voting

Auto-voting means that BFMeta provides the recommendation algorithm in the

bottom layer and nodes configure the algorithm parameter values independently.

When a node turns on auto-voting, the bottom layer will automatically vote for

trustees that meet the conditions based on the algorithm and the configured

052

BF
M

4. Consensus Protocol

4.2.4.3 Automatic Voting Recommendation Algorithm

The configuration parameters involved in the underlying recommendation

algorithm are listed in detail in BFMetaPC.Config.AutoVoteModel and will not be

repeated here. The following examples illustrate the auto-vote recommendation

algorithm.

parameter values.

053

BF
M

Manual voting means that a node can vote for any trustee on the chain that has

been enabled to receive votes, and the number of votes cast is controlled by the

node itself, as long as it does not exceed the maximum number of votes currently

owned by the node.

When a forger has forged a block, the bottom layer will directly calculate the

voting incentive due to all the address accounts that voted for the forger in the

previous round, and the incentive rights will be directly issued to each voting

address account.

4.2.4.4 Manual Voting

4.2.5 Voting Incentive

4. Consensus Protocol

The above table is set up to indicate that this node needs to elect a maximum of

57 candidate trustees through automatic voting, and the composition of these 57

candidate trustees is:

	 - The 17(57*0.3) trustees with the highest online rate within the selected

 block range that are open to receive votes.

	 - The 17 (57*0.3) trustees with the highest number of blocks forged within

 the selected block range that are open to receive votes

	 - 11 (57*0.2) trustees with the highest number of packaged deals in the

 selected block range who opened to receive votes

	 - 6 (57*0.1) trustees who received the highest number of votes in the

 previous round		

	 - 6 newly registered trustees in the selected block with the following rules:

 Number of votes > Number of primary asset > Public key.

054

BF
M

4. Consensus Protocol

TotalRewardOfVote : {rewardPerBlock + sum(eachtransactionfeeOftheBlock)} *

votePercent

a. rewardPerBlock: i.e. block incentive, determined by the underlying consensus,

the incentive given for forging the block will be different for different block heights

of forging. Current height, the underlying consensus default is 15BFM.

b. sum(eachtransactionfeeOftheBlock): each event generated on the chain needs to

pay a certain uplink fee, this uplink fee can be set by the account when initiating

the event, or the best uplink fee recommended by the underlying consensus

algorithm can be used. where eachtransactionfeeFortheBlock is the uplink fee for

each event packed into the block; sum(eachtransactionfeeOftheBlock) is the sum

of the uplink fees for each event packed into the block.

c. votePercent: the voting incentive weight, this is a constant, determined by the

underlying consensus, the current default is 0.6.

votePercent for each address account that voted for the forger in the previous

round = totalRewardOfVote * (number of votes for the forger in the previous round

/ total number of votes for the forger in the previous round)

For the consensus incentive mechanism of BFMeta ecology, please refer to the

chapter on consensus incentive mechanism, which will not be described in detail

in this subsection.

4.2.5.1 Incentive Formula

055

BF
M

4. Consensus Protocol

Blockchain is an indispensable and important infrastructure for the digital

world in the future metaverse, and on top of this infrastructure, it will carry

vertical applications of hundreds of lines and thousands of industries, and many

applications will bring massive users, and massive users need the support of

blockchain to provide massive transaction processing capacity. The special chain-

like block structure of blockchain determines that only one block can become

a valid block at the same time, and the block contains the transactions within

this unit time, which also constrains that only one batch of transactions can

be processed at the same time, which seriously constrains the improvement of

blockchain performance. Currently the industry has adopted some methods to

4.2.6 Distributed Transaction Synchronization

The following data will be calculated at the end-of-round block of each round:

a. Count the number of votes accumulated in the round for the trustee accounts

that have opened to receive votes.

b. Count and save the number of votes to be received in the next round for the

address accounts with voting governance turned on.

c. Update the account master asset and the number of confirmed events at the end

of the round for each address account with voting governance turned on.

d. Update the Rate value (Rate = max(master chain asset for each address account

that participated in the previous round)/max(number of confirmed events for each

address account that participated in the previous round)).

4.2.5.2 End-of-Round Calculation

056

BF
M

solve this problem, such as removing the block structure, but removing the block

structure will lead to a significant decrease in the reliability of transactions, which

is a huge cost cost. How to break through the performance constraints caused by

the chained block structure without reducing the reliability of transactions has

become an urgent problem to be solved.

BFMeta pioneered a method for synchronous processing of distributed

transactions in blockchain, which makes it possible to solve this problem: obtain

the list of nodes that have completed consensus and count the protocol version

with the maximum convention, calculate the transaction range of participating

second consensus nodes and send it, check the consensus status, the applicable

range of transactions, and Byzantine consistency issues, and when the nodes

receive the transactions check the transaction range and out block time, place the

result of transaction processing into a new block, wait until the node's block time

to announce the result to the public, and complete the parallel processing of the

transaction. We also provide a distributed transaction synchronization processing

system for blockchain, including a second consensus manager, transaction

manager, transaction manager, block forger, etc. The components are connected

sequentially, which solves the problem of blockchain processing transactions in

parallel by multiple nodes (non-cooperative block-beating nodes) at the same

time, thus improving performance.

4. Consensus Protocol

057

BF
M

5. Programmable Contracts
5.1 Smart Contracts

BFMeta builds a method to create smart contracts directly from mobile.

Both parties to a transaction freeze part of their assets to a smart contract in

the form of a smart contract, which is submitted to the blockchain for network-

wide deposition, and the contract takes effect when a network-wide consensus

is reached. After the contract takes effect, both parties only need to sign a

supplemental distribution agreement to the frozen agreement for transfers

within this asset amount. Since the total amount has not changed at this time,

the supplemental agreement only needs to be signed and acknowledged by both

parties and no longer needs to wait for network-wide confirmation. This method

increases the transfer speed between two accounts that transfer frequently, except

for the first freeze and the last unfreeze which are normal speed, the transfer

speed will be instantaneous at all other times, and the fee is very low.

Smart contract application on mobile blockchain has both high efficiency, security,

simplicity and economic practicality, which is more in line with the requirements

of future scale landing application.

BFMeta's smart contracts are the next generation of blockchain smart contracts,

unlike the current ones that rely on the execution of virtual machines in nodes,

and thus derive various counter-intuitive restrictions to barely maintain the

viability of the solution; and run one code repeatedly on each node, which is a

backward design for today's energy-constrained reality. distributed network that

5. Programmable Contracts

058

BF
M

relies on on-chain communication for distributed execution of smart contracts,

ultimately storing on the chain only the results that are confirmed by multiple

signatures and the correct ledger.

Essentially, BFMeta's smart contracts do not define a traditional contract virtual

machine, but rather a multi-signature list of variables: it is also the result of

the execution of the contract that is agreed to by all addresses involved in the

contract, and the total book changes without wrong accounting. This means

that the blockchain does not need to execute the contract repeatedly when it is

synchronized, but only needs to make sure that all involved addresses agree to the

contract result. This does not even require relying on code to execute the contract;

it is also feasible for real-life population to agree on the contract outcome and

upload the result to the chain. This opens up more possibilities for blockchain

ledger operations.

It also means that any programming language can be used for contract

development, and it is only necessary to link the addresses involved in the contract

based on a distributed network on the chain, execute it according to its content

and submit its result with a signature. The fundamental reason why the current

blockchain cannot adopt such a design is that BFMeta deeply integrates the

distributed network into the blockchain, relying on the highly available distributed

network to get an off-chain that is on-chain effect. So we can distribute smart

contracts to each node (including mobile nodes) to execute their own part of the

code separately, and finally aggregate.

In theory, this model of smart contract can be performed in any programming

language, but it involves the idempotence of the contract, in order to allow any

node is able to verify its code execution process. Therefore, our recommended

programming language of choice is Rust/Typescript. Rust is used because it can

5. Programmable Contracts

059

BF
M

compile WASM small enough and high enough to ensure that all nodes can verify

the contract results idempotently. It can also be compiled to Native for some high

performance scenarios in environments where the conditions are met. This means

that any function and function available in the developer's programming language

can be used, and for the executor, it is just a matter of choosing a contract that

meets their needs while picking the one with better performance.

Let's take a specific scenario to describe how this contract solution differs from

traditional contracts: Suppose there is an "image data collection contract" that

requires the collection of photos from a defined number of geographic regions,

and the finalist submission address gets the reward. Then in the traditional

blockchain, relying only on the contract code, it is impossible to judge whether

the photos meet the geographical requirements and quality requirements on the

chain; while in BFMeta, after relying on the distributed network to collect the

image data, the decision maker uses his own key tools to review the image data

locally and manually selects the shortlisted photos, and finally the contract is

finalized and uploaded to the chain. If the contributors publish their own review

criteria, then they can also let other addresses push each other to review, and the

contributors only need to pick the one they want in the end (similar to separating

the cake cutter from the cake picker), thus further ensuring fairness.

5.2 Digital Products (DP/NFT)

DP (Digital Products) is an acronym for a non-homogeneous digital asset type,

which is a signed proof of a digital product stored on the blockchain that is unique,

tamper-evident, and non-detachable.

BFMeta provides a way to mark the ownership of digital products. Each circulation

5. Programmable Contracts

060

BF
M

and change of ownership of a DP work is recorded on the blockchain and a unique

digital certificate is generated, making it non-detachable, non-replicable and non-

tamperable.

DP is of great significance for building metaverse due to its uniqueness, non-

splittability, non-tamperability and replication. It can be used to record and trade

digital assets, such as digital works, artworks, property certificates, tickets and

game props. At the same time, DP changes the traditional virtual goods trading

model, users can directly produce and trade virtual goods as if they were in the

real world.

BFMeta connects various assets in the real world with the digital world through

DP, continuously enriching the ecological variety of the metaverse, and thus

continuously expanding the imaginary boundaries of the metaverse.

DeFi (Decentralized Finance) , a decentralized financial system created based

on blockchain technology and cryptocurrency, is decentralized, open and

transparent, reliable, fair and secure. It has been able to make possible the

attribution, circulation, realization of value and authentication of virtual identity

in the metaverse.

BFMeta supports both various digital asset (Token) DeFi and digital product

DeFi. DPFi is a liquidity protocol for BFMeta's digital product DP, which allows

DP owners to obtain secured asset loans from peer-to-peer liquidity providers in

a fully de-trusted manner, increasing the liquidity of the DP assets they own. DP

liquidity providers use DPFi to earn attractive returns or have the opportunity to

5.3 DeFi Support

5. Programmable Contracts

061

BF
M

acquire DPs at a price below their market value in the event of a loan default.

5. Programmable Contracts

062

BF
M

6. Programmable Digital Asset Issuance
6.1 Destruction Issuance (Deflation Mechanism)

6.2 Decentralized Asset Exchange

BFMeta builds a method, system and apparatus for asset issuance based on

blockchain token destruction.

Assets are an important part of production and life in social activities, which

are both necessary elements for production and important driving factors for

social development, while their circulation efficiency in society largely affects the

forward rate of social development.

How to accelerate the circulation efficiency of assets to speed up the development

of society is a unanimous effort of the whole social activities of the relevant

institutions and individuals.

In the traditional way, the circulation of assets often relies on a central authority,

such as housing agents, notaries, property management centers, intellectual

property exchanges, etc. They act as intermediaries to provide services for both

sides of the circulation of assets, either by the intermediaries to intervene in

holding assets and funds to guarantee the transaction, or by the intermediaries

to witness the transaction, which to a certain extent alleviates the problem of

asset circulation, but does not well The lack of any kind of intermediary will

largely lead to the failure of asset circulation, and the simultaneous participation

of intermediaries determines the inefficiency of completing asset circulation;

6. Programmable Digital Asset Issuance

063

BF
M

however, if we let the two sides deal directly, there is a high probability of not

reaching agreement because of the trust problem. Then, how to establish a

method of asset circulation that is trustworthy for both parties but not affected by

the efficiency of the third party becomes an urgent problem to be solved.

BFMeta builds a decentralized asset exchange method, where the issuing party

fills in the information of the issuing entity and the issuing asset, the issuing party

uses a digital certificate to sign the transaction, submits the blockchain transaction

to the blockchain and places the transaction into the block; the participating

party uses a private key to encrypt the identity feature information and turns it

into a blockchain transaction to complete the real name authentication; when

the blockchain extracts the information of the asset After the blockchain extracts

the information of the asset, the sender fills in the asset transfer information

and uses the signature of the sender to sign and send the blockchain transaction;

the counterparty receives the blockchain transaction, signs it and sends it to the

blockchain for processing, and completes the asset exchange by verifying the

correctness of the transaction, which realizes the role of decentralized and rapid

flow of assets and solves the credit risk introduced by the intermediary and the

problem of inefficient asset circulation.

6. Programmable Digital Asset Issuance

064

BF
M

7. Chain Services
7.1 Chain Domain Name-LNS

In web 2.0, due to the disadvantages of a string of numeric IP addresses that

are not easy to remember and do not show the name and nature of the address

organization, domain names were designed and the DNS (Domain Name System)

was used to map domain names and IP addresses to each other, making it easier

for people to access the Internet without having to remember the number of IP

addresses that can be read directly by machines. IP address number strings.

In the blockchain system, node IPs are also not easy to remember. Can we design

a corresponding chain domain name for each node on the blockchain, just like the

domain name system?

Meanwhile, blockchain can solve the security and privacy problems of each

website on web 2.0 Internet, so can we develop a new chain domain name system

on blockchain to realize decentralized and distributed access to websites on the

chain?

BFMeta has built a new distributed location name service LNS, which is called

"Location Name Service". Organizations/users can register or purchase LNS and

create a corresponding DWeb site for them, which can be easily accessed by

people. The emergence of LNS location name service builds a bridge between the

complex computer language of blockchain and the common human language, so

that people can easily access the blockchain website by entering the name of a

person/organization + .com/cn/org, just like the Internet in the past.

7. Chain Services

065

BF
M

7.2 DWeb

7.3 Dual Offline Payment

BFMeta provides DWeb blockchain website construction for organizations and

individuals using a peer-to-peer protocol invented in-house. These DWeb sites can

store web pages, images, media, user data, etc. just like regular Web 2.0 sites.

In the Web 2.0 era, hosting a website was traditionally done by "servers", which

could be centralized vendor computers or cloud dedicated computers. to

help DWeb sites online, and can even be permanently open for favorite sites,

permanently online.

Users can grab an LNS chain domain name at BFMeta and create a corresponding

DWeb site, and then share the DWeb link with any other user.

The Internet has become an essential component of our modern daily life. What

happens if, in some special circumstances, the Internet is not available? We are

likely to be unable to order takeout, call a taxi, watch classroom videos, submit

work, communicate with people, transact with people, and so on. The inability

to transact with people electronically almost prevents more than 80% of our daily

activities. So is there an electronic payment method that can be used even when

the network is offline? At present, there are products such as the card-carrying

coin purse launched by UnionPay Card and the offline payment launched by

Alipay WeChat, but these products still require merchants to be online in order to

use them, and it is still impossible for both parties to make payments completely

off the network. In the current era of advanced Internet, network offline is still

a frequent occurrence, such as on the plane, in the ocean region, in the deep

forest, power outage and disconnection, network blockage, fiber break, network

7. Chain Services

066

BF
M

congestion, etc., which can lead to network unavailability, so how to provide

payment service for both parties of the transaction even when the network is

completely offline has become an urgent problem to solve.

BFMeta builds a blockchain-based offline transaction method, including a

unilateral offline transaction method and a bilateral offline transaction method. In

the unilateral offline state, the online party is allowed to submit a payment request

for the offline party; in the bilateral offline state, the payer issues an irrevocable,

non-repudiation and non-forgeable payment voucher for the payee, which is

directly used by the payee as the basis of arrival, and the payee cashes the voucher

from the network when the network is restored.

BFMeta's offline transaction system, including transaction manager, account

synchronizer, and voucher manager; it can provide good support for mobile

terminal devices and provide application layer services even if the network is

unstable, realizing the role of making payments offline and solving the problem of

not being able to make payments in case of network disconnection.

7.4 On-chain Red Envelope

Based on the natural attribute of "daily application" in mobile, BFMeta asset bonus

is an important innovation of blockchain application on the ground, which is

the starting point to help users establish blockchain awareness. digital wallet or

the change of book numbers on Alipay/WeChat red envelopes is fundamentally

different. At the same time, in the scenario of physical assets on the chain, on-

chain red envelopes can also send the digital assets corresponding to the physical

assets.

7. Chain Services

067

BF
M7.6 Crossing the World

On BFMeta, enterprises can customize and develop parallel chains according to

their business needs and application scenarios. For the business that does not

need to be completely on the chain, enterprises can also selectively on the chain,

independently develop DAPP or embedded development on the main chain of

BFMeta. Each sub-chain on BFMeta will interoperate with other parallel chains

and form a living biomass together. This group will continue to evolve and iterate

and update with the participation of developers and users all over the world to

solve social problems.

For enterprises, BFMeta presents three main functions:

1) Empowering evolutionary chain development

7. Chain Services

7.5 Service Market

In the service market, BFMeta provides various valuable surfing market (Web

Application) and node application (Node Application) to provide comprehensive

and diversified services for developers, different types of nodes and users.

Users can visit interested on-chain Web sites on the Surf Market, or select a

favorite node (e.g. EOW) in the node search result list, and then download and

install it to use. Blockchain application coders can also develop various DApps,

DWeb and deploy smart contracts in the "Developer Community". In the physical

chain scenario, digital goods issuers can also display their products, brands and

after-sales services in the surfing market.

068

BF
M

Through the authorization of BFMeta, enterprises can customize the development

of license chains and parallel public chains according to their business needs and

application scenarios.

2) Physical assets on the chain and digital assets (including digital goods, digital

consumption points, etc.) issuance

BFMeta provides "digital assets anchored to physical objects, and the digital twin

on the chain replaces the physical objects in the chain circulation", as well as

digital assets issuance and management services for physical enterprises and

institutions.

3) On-chain application development and smart contract deployment

Developers can develop various DApps, DWebs and deploy smart contracts on

BFMeta to build a credible foundation platform together.

7. Chain Services

069

BF
M

8. Interface Documentation
8 . 1 I nte r f a ce I n co m i n g Pa ra m e te rs a n d Re tu r n
Parameters Description

8.1.1 Example of Passing/Entering Parameters

(1) The full name of the interface is the function name of the interface, which is

also the full name when called from the command line.

(2) Interface abbreviation is the abbreviated name when the command line call.

(3) Callable method refers to the ways in which the interface is allowed to be

called.

(4) The call method is used when http is used, and the string is added in front of /

api when websocket is used.

(5) The request and return parameters are described in the syntax of typescript, or

in <type definition> if designed for type definition.

The following is a description of the "Get Specified Account" interface for passing

and entering parameters.

- Full name of the interface: getAccountInfoAndAssets

- Interface abbreviation: ga

- Callable methods: Http, Websocket, command line, Grpc

8. Interface Documentation

070

BF
M

- Call method: post

- Interface url address: /api/basic/getAccountInfoAndAssets

- Request parameters

- Return parameters

8.2 Basic Interface

8.2.1 Getting BFChain Version Number

This section will briefly introduce the BFMeta basic interface parameters, for more

details on the use of each parameter and the re-referencing content, please go to

the BFMeta developer community.

- Full name of the interface: getBfchainVersion

- Interface abbreviation: v

- Callable methods: Http, Websocket, command line

- Call method: get

- Interface url address: /api/basic/getBfchainVersion

- Request parameters: None

8. Interface Documentation

071

BF
M8.2.3 Getting the Specified Block

8.2.4 Getting the Specified Event

- Full name of the interface: getBlock

- Interface abbreviation: gb

- Callable methods: Http, Websocket, command line, Grpc

- Call method: post

- Interface url address: /api/basic/getBlock

- Request parameters.

- Full name of the interface: getTransactions

- Interface abbreviation: gt

interface GetBlock {/**block signature* /

signature?: string;/**blockh eight */

height?: number;/**view thep age(20 recordsp er page)* /

page?: number;}

8. Interface Documentation

8.2.2 Getting the Current Latest Block of the Local Node

- Full name of the interface: getLastBlock

- Interface abbreviation: glb

- Callable methods: Http,Websocket,Command Line,Grpc

- Call method: get

- Interface url address: /api/basic/getLastBlock

- Request parameters: None

072

BF
M

8.2.5 Getting the Last Transaction of an Account

- Full name of the interface: getAccountLastTransaction

- Interface abbreviation: None

- Callable mode: Http,Websocket

8. Interface Documentation

- Callable methods: Http, Websocket, command line, Grpc

- Call method: post

- Interface url address: /api/basic/getTransactions

- Request parameters.

interface GetTransactions {/**event id */

signature?: string;/**event block height */

height?: number;/**The minimum height of the block the event belongs to, can be

used with maxHeight to query events in a block. */

minHeight?: number;/**the highest height of the block the event belongs to, can be

used with minHeight to query the events of a period */

maxHeight?: number;/**event initiator */

senderId?: string;/**event recipient */

recipientId?: string;/**Event type, if not passed in then event type is not filtered, please

refer to */type?: string[];/**The index value of the event, you can query the event

based on the index value of the event. The index value may be a value such as

assetType or signature or username, and it is recommended to use it in parallel with

other conditions to find precisely. */

storageValue?: string;/**View the page (20 records per page) */

page?: number;}

073

BF
M

- Call method: post

- Interface url address: /api/basic/getAccountLastTransaction

- Description: This interface is used to get the approximate balance of the specified

address. According to the return parameter transactionAssetChanges of the

accountType to get the assetBalance as the balance

- Request parameters.

interface GetAccountInfoAndAssets {/**account address* /

address: string;/**assett ype* /

assetType: string;}

8.2.6 Creating an Account

8.2.7 Getting Node Status

- Full name of the interface: createAccount

- Interface abbreviation: ca

- Callable methods: Http, Websocket, command line, Grpc

- Call method: post

- interface url address: /api/basic/createAccount

- request parameters.

- Full name of the interface: getBlockChainStatus

interface CreateAccount {/**account key* /

secret: string;}

8. Interface Documentation

074

BF
M

8.2.8 Getting the Last Transaction of the Account According to the
Transaction Type

8.2.9 Getting the Event Type

- Full name of the interface: getAccountLastTypeTransaction

- Interface abbreviation: galtt

- Callable methods: Http, Websocket, command line

- Call method: post

- Interface url address: /api/basic/getAccountLastTypeTransaction

- Request parameters.

- Full name of the interface: getTransactionType

- Interface abbreviation: none

- Callable mode: Http,Websocket

- Call method: post

- Interface url address: /api/basic/getTransactionType

interface GetAccountLastTypeTransaction{/**account address* /

address: string;/**transactiont ype* /

transactionType: string;}

8. Interface Documentation

- Interface abbreviation: gbc

- Callable methods: Http, Websocket, command line, Grpc

- Call method: get

- Interface url address: /api/basic/getBlockChainStatus

- Request parameters: None

075

BF
M

8. Interface Documentation

- Request parameters.

076

BF
M

8.3 Event Class Interface Usage Description
8.3.1 Transfer Events

8.3.1.1 Creating a Transfer Event

- Full name of the interface: trTransferAsset

- Callable methods: Http, Websocket, command line

- Call method: post

- Interface url address: /api/transaction/trTransferAsset

- Request parameters.

interface TrTransferAsset extends TrCommonParam {/**Numbero ft ransferred assets,

0-9a nd without decimal point,m ustb eg reater than 0* /

8. Interface Documentation

077

BF
M8.3.1.2 Creating a Transfer Event (with Security Key)

8.3.1.3 Sending a Transfer Event

- Full name of the interface: trTransferAssetWithSign

- Callable methods: Http, Websocket, command line

- Call method: post

- interface url address: /api/transaction/trTransferAssetWithSign

- Request parameters.

- Full name of the interface: transferAsset

interface TrTransferAssetWithSign {/**bufferg enerated by event body without

signature, generatedb yT rTransferAsset* /

buffer: string;/**event signature* /

signature: string;}

8. Interface Documentation

amount: string;/**The type of assett ob et ransferred,i n uppercasel etters,3 -5

characters* /

assetType?: string;/**The name of thec hain to whicht he asseti st ransferred,i n

lowercasel etters,3 -8 characters* /

sourceChainName?: string;/**Network identifiero ft he chaint ow hich thea sseti s

transferred, in uppercasel etters or numbers,5 characters, last biti sa checkd igit */

sourceChainMagic?: string;/**The addresso ft he receiving account of thee vent,b ase58

encodedh exadecimals tring */

recipientId: string;}

078

BF
M8.3.2.1 Creating a Set-Security-Password Event

8.3.2.2 Creating a Set-Username Event (with Security Key)

8.3.2 Setting Up a Secure Password Event

- Full name of the interface: trSignature

- Callable methods: Http, Websocket, command line

- Call method: post

- Interface url address: /api/transaction/trSignature

- Request parameters.

- Full name of the interface: trSignatureWithSign

interface TrSignature extends TrCommonParam {/**new security password* /

newSecondSecret: string;}

8. Interface Documentation

interface SendTrCommonParam {/**Buffert ob es igned, converted to base64 string

*/

buffer: Buffer;/**signature of thet ransaction* /

signature: string;/**the security signatureo ft he transaction* /

signSignature?: string;

- Callable methods: Http, Websocket, command line

- Call method: post

- Interface url address: /api/transaction/send/transferAsset

- Request parameters.

079

BF
M

interface SendTrCommonParam {/**Buffert ob es igned, converted to base64 string

*/

buffer: Buffer;/* /

buffer: Buffer;/**signature of thet ransaction* /

signature: string;

/**t he security signatureo ft he transaction* /

signSignature?: string;}

8. Interface Documentation

interface TrSignatureWithSign {/**bufferg enerated by event body without signature,

generatedb yt rSignature */

buffer: string;/**event signature* /

signature: string;}

- Callable methods: Http, Websocket, command line

- call method: post

- interface url address: /api/transaction/trSignatureWithSign

- Request parameters.

8.3.2.3 Sending a Set-Security-Password Event

- Full name of the interface: signature

- Callable methods: Http, Websocket, command line

- Call method: post

- Interface url address: /api/transaction/send/trSignature

- Request parameters.

080

BF
M

8.3.3.2 Creating a Set-Username Event (with Security Key)

- Full name of the interface: trUsernameWithSign

- Callable methods: Http, Websocket, command line

- Call method: post

- interface url address: /api/transaction/trUsernameWithSign

- Request parameters.

interface TrUsernameWithSign {/**bufferg enerated by event body without signature,

generatedb yt rUsername* /

buffer: string;/**event signature* /

signature: string;}

8. Interface Documentation

8.3.3 Setting the User Name Event

8.3.3.1 Creating a Set-Username Event

- Full name of the interface: trUsername

- Callable methods: Http, Websocket, command line

- Call method: post

- Interface url address: /api/transaction/trUsername

- Request parameters.

interface TrUsername extends TrCommonParam {/**usernames tring, uppera nd

lower casel etters, numbers, underscores, 1-20 characters, cannot containt hen ameo f

thec urrent chain* /

alias: string;}

081

BF
M

8.3.4 Registered Trustee Events

8.3.4.1 Creating a Registered Trustee Event

- Full name of the interface: trDelegate

- Callable methods: Http, Websocket, command line

- Call method: post

- Interface url address: /api/transaction/trDelegate

- Request parameters.

8. Interface Documentation

8.3.3.3 Sending a Set-Username Event

- Full name of the interface: username

- Callable methods: Http, Websocket, command line

- Call method: post

- Interface url address: /api/transaction/send/username

- Request parameters.

082

BF
M

8. Interface Documentation

8.3.4.2 Creating a Registered Trustee Event (with Security Key)

8.3.4.3 Sending a Registered Trustee Event

- Full name of the interface: trDelegateWithSign

- Callable methods: Http, Websocket, command line

- Call method: post

- Interface url address: /api/transaction/trDelegateWithSign

- Request parameters.

- Full name of the interface: delegate

- Callable methods: Http, Websocket, command line

- Call method: post

- Interface url address: /api/transaction/send/delegate

- Request parameters.

083

BF
M

8. Interface Documentation

8.3.5 Receiving Polling Events

8.3.5.1 Creating a Receive-Vote Event

8.3.5.2 Creating A Receive-Vote Event (with Security Key)

- Full name of the interface: trAcceptVote

- Callable methods: Http, Websocket, command line

- Call method: post

- Interface url address: /api/transaction/trAcceptVote

- Request parameters.

- Full name of the interface: trAcceptVoteWithSign

- Callable methods: Http, Websocket, command line

- Call method: post

- Interface url address: /api/transaction/trAcceptVoteWithSign

- Request parameters.

084

BF
M

interface TrRejectVote extends TrCommonParam {}

8. Interface Documentation

8.3.5.3 Sending and Receiving Vote Events

- Full name of the interface: acceptVote

- Callable methods: Http, Websocket, command line

- Call method: post

- Interface url address: /api/transaction/send/acceptVote

- Request parameters.

interface SendTrCommonParam {/**Convert the buffert hatn eeds as ignature into a

base64 string.* /

buffer: Buffer;/**signature of thet ransaction* /

signature: string;

/**the security signatureo ft he transaction* /

signSignature?: string;}

8.3.6 Rejecting Votes

8.3.6.1 Creating A Reject-Vote Event

- Full name of the interface: trRejectVote

- Callable methods: Http, Websocket, command line

- Call method: post

- Interface url address: /api/transaction/trRejectVote

- Request parameters.

085

BF
M

8. Interface Documentation

8.3.6.2 Creating a Reject-Vote Event (with Security Key)

8.3.6.3 Sending a Reject-Vote Event

- Full name of the interface: trRejectVoteWithSign

- Callable methods: Http, Websocket, command line

- call method: post

- interface url address: /api/transaction/trRejectVoteWithSign

- Request parameters.

- Full name of the interface: rejectVote

- Callable methods: Http, Websocket, command line

- Call method: post

- Interface url address: /api/transaction/send/rejectVote

- Request parameters.

interface TrRejectVoteWithSign {/**bufferg enerated from event body without

signature, generatedb yt rRejectVote */

buffer: string;/**event signature* /

signature: string;}

signature: string;

/**the security signatureo ft he transaction* /

interface SendTrCommonParam {/**Convert the buffert hatn eeds as ignature into a

base64 string.* /

buffer: Buffer;/**signature of thet ransaction* /

086

BF
M

signSignature?: string;}

8.3.7 Polling Events

8.3.7.1 Creating a Voting Event

8.3.7.2 Creating a Voting Event (with Security Key)

- Full name of the interface: trVote

- Callable methods: Http, Websocket, command line

- Call method: post

- Interface url address: /api/transaction/trVote

- Request parameters.

- Full name of the interface: trVoteWithSign

- Callable methods: Http, Websocket, command line

- Call method: post

- interface url address: /api/transaction/trVoteWithSign

- Request parameters.

interface TrVote extends TrCommonParam {/**the numbero fa sset cast, 0-9a nd

without decimal points, 0a llowed */

asset: string;/**the addresso ft he receiving account fort he event, base58 encoded

hexadecimals tring */

recipientId: string;}

interface TrVoteWithSign {/****bufferg enerated from event body without signature,

generatedb yt rVote* /

8. Interface Documentation

087

BF
M

8.3.7.3 Sending and Receiving a Polling Event

- Full name of the interface: vote

- Callable methods: Http, Websocket, command line

- Call method: post

- Interface url address: /api/transaction/send/vote

- Request parameters.

8.3.8 Publishing DApp Events

8.3.8.1 Creating a Release-DApp Event

- Full name of the interface: trDApp

- Callable methods: Http, Websocket, command line

- Call method: post

8. Interface Documentation

088

BF
M

8.3.8.2 Creating an Issue-DApp Event (with Security Key)

- Full name of the interface: trDAppWithSign

- Callable methods: Http, Websocket, command line

- Call method: post

- interface url address: /api/transaction/trDAppWithSign

- Request parameters.

8. Interface Documentation

- Interface url address: /api/transaction/trDApp

- Request parameters.

/**DAppidw ithout checksum, upper caseo r numeric,7 characters */

newDAppid: string;

/**The type of the DAppid, can onlyb e0 or 1,0 meanst he DAppidi sp aid, 1

meanst he DAppidi s free. */

type: number;

/**The numbero fb enefitsn eededt o purchaset he right to uset he DAppid(must be

carried if the DAppidi sa paid app, no need to carryi ti fi ti sa free app),0 -9 andn o

decimal points, must be greatert han0 .* /

amount: string;

/**the recipient account addresso ft he event, base58 encodedh exadecimal string */

recipientId?: string;}

interface TrDApp extends TrCommonParam {

089

BF
M

8.3.8.3 Sending an Issue-DApp Event

- Full name of the interface: DApp

- Callable methods: Http, Websocket, command line

- Call method: post

- Interface url address: /api/transaction/send/DApp

- Request parameters.

8. Interface Documentation

090

BF
M

8.3.9.2 Creating a Purchase-DApp Event (with Security Key)

- Full name of the interface: trDAppPurchasingWithSign

- Callable methods: Http, Websocket, command line

8. Interface Documentation

- Full name of the interface: trDAppPurchasing

- Callable methods: Http, Websocket, command line

- Call method: post

- Interface url address: /api/transaction/trDAppPurchasing

- Request parameters.

8.3.9 DApp Purchase Events

8.3.9.1 Creating a Purchase-DApp Event

091

BF
M8.3.9.3 Sending a Purchase-DApp Event

- Full name of the interface: DAppPurchasing

- Callable methods: Http, Websocket, command line

- Call method: post

- Interface url address: /api/transaction/send/DAppPurchasing

- Request parameters.

8. Interface Documentation

- call method: post

- interface url address: /api/transaction/trDAppPurchasingWithSign

- Request parameters.

092

BF
M

8. Interface Documentation

- Full name of the interface: trMark

- Callable methods: Http, Websocket, command line

- Call method: post

- Interface url address: /api/transaction/trMark

- Request parameters.

8.3.10 Depositing Events

8.3.10.1 Creating a Deposition Event

content: string;

/**the type of thec ertificate,a sa na rbitrary string,u sedt od istinguish the

certificate* /

action: string;

/**the DAppido ft he certificate, in uppercasel etters,8 characters */

DAppid: string;

/**The type of DAppid, can onlyb e0 or 1. 0m eans DAppidi sp aidt ype.1m eans

DAppidi sf reet ype. */

type: number;

/**numbero fa ssets pent to purchase DAppid* /

purchaseAsset?: number;}

interface TrMark extends TrCommonParam {

/**the contents of thec ertificate,a sa na rbitrarys tring* /

093

BF
M

- Full name of the interface: mark

- Callable methods: Http, Websocket, command line

- Call method: post

- Interface url address: /api/transaction/send/mark

- Request parameters.

8.3.10.3 Sending a Deposit Event

8. Interface Documentation

- Full name of the interface: trMarkWithSign

- Callable methods: Http, Websocket, command line

- call method: post

- interface url address: /api/transaction/trMarkWithSign

- Request parameters.

8.3.10.2 Creating a Deposit Event (with Security Key)

094

BF
M

8. Interface Documentation

- Full name of the interface: trIssueAsset

- Callable methods: Http, Websocket, command line

- Call method: post

- Interface url address: /api/transaction/trIssueAsset

- Request parameters.

8.3.11.1 Creating an Asset Issuance Event

8.3.11 Asset Issuance Events

095

BF
M

interface SendTrCommonParam {

8. Interface Documentation

- Full name of the interface: trIssueAssetWithSign

- Callable methods: Http, Websocket, command line

- call method: post

- interface url address: /api/transaction/trIssueAssetWithSign

- Request parameters.

- Full name of the interface: issueAsset

- Callable methods: Http, Websocket, command line

- Call method: post

- Interface url address: /api/transaction/send/issueAsset

- Request parameters.

8.3.11.2 Creating an Asset Issuance Event (with Security Key)

8.3.11.3 Sending an Asset Issuance Event

096

BF
M

8. Interface Documentation

/**Convert the buffert hatn eeds as ignature into ab ase64s tring. */

buffer: string;

/**event signature* /

signature: string;

/**the security signatureo ft he transaction* /

signSignature?: string;}

- Interface full name: trDestroyAsset

- Callable methods: Http, Websocket, command line

- Call method: post

- Interface url address: /api/transaction/trDestroyAsset

- Request parameters.

8.3.12 Asset Destruction Events

8.3.12.1 Creating an Asset Destruction Event

097

BF
M

8. Interface Documentation

- Full name of the interface: trDestroyAssetWithSign

- Callable methods: Http, Websocket, command line

- call method: post

- interface url address: /api/transaction/trDestroyAssetWithSign

- Request parameters.

- Interface full name: destroyAsset

- Callable methods: Http, Websocket, command line

- Call method: post

- Interface url address: /api/transaction/send/destroyAsset

- Request parameters.

8.3.12.2 Create an Asset Destruction Event (with Security Key)

8.3.12.3 Sending an Asset Destruction Event

098

BF
M

8. Interface Documentation

- Full name of the interface: trToExchangeAsset

- Callable methods: Http, Websocket, command line

- Call method: post

- Interface url address: /api/transaction/trToExchangeAsset

- Request parameters.

8.3.13 Asset Exchange Events

8.3.13.1 Creating an Asset Exchange Event

099

BF
M

8. Interface Documentation

- Full name of the interface: trToExchangeAsset

- Callable methods: Http, Websocket, command line

8.3.13.2 Creating an Asset Exchange Event (with Security Key)

100

BF
M

8. Interface Documentation

- call method: post

- interface url address: /api/transaction/trToExchangeAsset

- Request parameters.

- Full name of the interface: trToExchangeAsset

- Callable methods: Http, Websocket, command line

- Call method: post

- Interface url address: /api/transaction/send/trToExchangeAsset

- Request parameters.

8.3.13.3 Sending an Asset Exchange Event

101

BF
M

8. Interface Documentation

- Full name of the interface: trBeExchangeAsset

- Callable methods: Http, Websocket, command line

- Call method: post

- Interface url address: /api/transaction/trBeExchangeAsset

- Request parameters.

8.3.14 Acceptance of an Asset Exchange Event

8.3.14.1 Accepting an Asset Exchange Event

102

BF
M

- Full name of the interface: trBeExchangeAssetWithSign

- Callable methods: Http, Websocket, command line

- call method: post

- interface url address: /api/transaction/trBeExchangeAssetWithSign

- Request parameters.

- Full name of the interface: destroyAsset

- Callable methods: Http, Websocket, command line

- Call method: post

- Interface url address: /api/transaction/send/destroyAsset

- Request parameters.

8.3.14.2 Creating an Accept-Asset-Exchange Event (with Security Key)

8.3.14.3 Sending an Accept-Asset-Exchange Event

8. Interface Documentation

103

BF
M

8.4 Instructions for Using the Node Management Interface
8.4.1 Safety Close of Node

8.4.2 Setting Node Password

- Full name of the interface: safetyClose

- Interface abbreviation: sfc

- Callable methods: Http, Websocket, command line, Grpc

- Call method: post

- Interface url address: /api/system/safetyClose

- Request parameters.

- Full name of the interface: setSystemKey

- Interface abbreviation: ssk

8. Interface Documentation

104

BF
M8.4.3 Verifying Node Password

- Full name of the interface: setSystemKey

- Interface abbreviation: ssk

- Callable methods: Http, Websocket, command line, Grpc

- Call method: post

- Interface url address: /api/system/setSystemKey

- Request parameters.

8. Interface Documentation

- Callable methods: Http, Websocket, command line, Grpc

- Call method: post

- Interface url address: /api/system/setSystemKey

- Request parameters.

105

BF
M

8.4.5 Getting Node Administrator

- Full name of the interface: getSystemAdmin

- Interface abbreviation: gsa

- Callable methods: Http, Websocket, Command Line, Grpc

- Call method: post

- Interface url address: /api/system/getSystemAdmin

- Request parameters.

8. Interface Documentation

8.4.4 Adding Node Administrator

- Full name of the interface: addSystemAdmin

- Interface abbreviation: asa

- Callable methods: Http, Websocket, command line, Grpc

- Call method: post

- Interface url address: /api/system/addSystemAdmin

- Request parameters.

106

BF
M

8.4.7 Deleting Node Administrator

- Full name of the interface: delSystemAdmin

- Interface abbreviation: dsa

- Callable methods: Http, Websocket, command line, Grpc

- Call method: post

- Interface url address: /api/system/delSystemAdmin

- Request parameters.

interface DelSystemAdmin {/**node password* /

systemKey: string;/**node administratora ddress: please refert o< Node Administrator>

fora dministrator description* /

8. Interface Documentation

8.4.6 Verify Node Administrator

- Full name of the interface: verifySystemAdmin

- Interface abbreviation: vsa

- Callable methods: Http, Websocket, command line, Grpc

- Call method: post

- Interface url address: /api/system/verifySystemAdmin

- request parameters.

107

BF
M

8.4.9 Binding Node Accounts

- Full name of the interface: bindingAccount

- Interface abbreviation: ba

- Callable methods: Http, Websocket, command line, Grpc

- Call method: post

- Interface url address: /api/system/bindingAccount

- request parameters.

interface BindingAccount {/**node password* /

8. Interface Documentation

systemAdminAddress: string;}

8.4.8 Resetting Node Administrator

- Full name of the interface: resetSystemAdmin

- Interface abbreviation: none

- Callable methods: Http,Websocket

- Call method: post

- Interface url address: /api/system/resetSystemAdmin

- Request parameters.

systemAdminAddresses: string[];}

interface ResetSystemAdmin {/**node password */

systemKey: string;/**node administratora ddress: please refert o< Node Administrator>

fora dministrator description* /

108

BF
M

8.4.11 Querying All Forgers Registered by the Node

- Full name of the interface: getInjectGenerators

- Interface abbreviation: gsd

- Callable methods: Http,Websocket

- Call method: post

- Interface url address: /api/system/getInjectGenerators

- Request parameters.

8. Interface Documentation

systemKey: string;/**trustee privatek ey aftere ncryption* /

cryptoSecret: string;/**encrypted TrusteeS ecurity Key* /

secondSecret?: string;}

8.4.10 Getting Node Trustee

- Full name of the interface: getSystemDelegate

- Interface abbreviation: gsd

- Callable methods: Http, Websocket, command line, Grpc

- Call method: post

- Interface url address: /api/system/getSystemDelegate

- Request parameters.

verifyKey: string;}

interface GetSystemDelegate {/**node administratora ddress: please refert o< Node

Administrator>f or administratord escription */

verifyType: string;/**check value: depending on thea uthorityo ft he node visitor,

passwordc heck for node ownera nd addressc heck fora dministrator */

109

BF
M

8.4.13 Getting Node Details

- Full name of the interface: getSystemNodeInfo

8. Interface Documentation

8.4.12 Query Details Of the Forger Registered by the Node

- Full name of the interface: getSystemDelegateDetail

- Interface abbreviation: none

- Callable methods: Http,Websocket

- Call method: post

- Interface url address: /api/system/getSystemDelegateDetail

- Request parameters: /api/system/getSystemDelegateDetail

110

BF
M

interface MiningMachineInfo {/**node administrator address: pleaser efer to <Node

Administrator>f or administratord escription */

verifyType: string;/**check value: depending on thea uthorityo ft he node visitor,

passwordc heck for node ownera nd addressc heck fora dministrator */

verifyKey: string;}

8. Interface Documentation

- Interface abbreviation: none

- Callable methods: Http,Websocket

- Call method: post

- Interface url address: /api/system/getSystemNodeInfo

- Request parameters.

8.4.14 Node Information Query

- Full name of the interface: miningMachineInfo

- Interface abbreviation: mmi

- Callable methods: Http, Websocket, command line, Grpc

- Call method: post

- Interface url address: /api/system/miningMachineInfo

- request parameters.

111

BF
M

8. Interface Documentation

8.4.15 Setting Node Configuration Information

8.4.16 Getting Node Configuration Information

- Full name of the interface: setSystemConfig

- Interface abbreviation: ssc

- Callable methods: Http, Websocket, command line, Grpc

- Call method: post

- Interface url address: /api/system/setSystemConfig

- Request parameters.

- Full name of the interface: getSystemConfigInfoDetail

- Interface abbreviation: gsci

- Callable methods: Http, Websocket, command line, Grpc

- Call method: post

- Interface url address: /api/system/getSystemConfigInfoDetail

- Request parameters.

interface SetSystemConfig {/**node administrator address: please refert o< Node

Administrator>f or administratord escription */

verifyType: string;/**check value: depending on thea uthorityo ft he node visitor,

passwordc heck for node ownera nd addressc heck fora dministrator */

verifyKey: string;/**configuration information: allp arametersh ere can be empty* /

config: AllPartial<Config.ConfigRevisable>;}

112

BF
M

8. Interface Documentation

8.4.17 Getting Node State (Real-Time Information)

8.4.18 Getting Node Access Statistics

- Full name of the interface: getRuntimeState

- Interface abbreviation: grs

- Callable methods: Http, Websocket, command line, Grpc

- call method: post

- interface url address: /api/system/getRuntimeState

- Request parameters.

- Full name of the interface: getSystemMonitor

- Interface abbreviation: gsm

- Callable methods: Http, Websocket, command line, Grpc

- Call method: post

- Interface url address: /api/system/getSystemMonitor

113

BF
M

8. Interface Documentation

- Request parameters.

8.4.19 Getting Running Log Type of the Node

- Full name of the interface: getSystemLoggerType

- Interface abbreviation: glt

- Callable methods: Http, Websocket, command line, Grpc

- Call method: post

- Interface url address: /api/system/getSystemLoggerType

- Request parameters.

interface GetSystemMonitor {/**node administratora ddress: please refert o< Node

Administrator> fora dministrator description* /

verifyType: string;/**check value: depending on thea uthorityo ft he node visitor,

passwordc heck for node ownera nd addressc heck fora dministrator */

verifyKey: string;/**Specify thet ypeo f access, including thet raffic of accessing IP,

numbero ft imes, numbero f accessing interfaces, numbero fb locks, eventd ata, etc. */

monitorType?: string;/**The numbero f queries,f or example, limit=10, meanst hat1 0

data can be queried.* /

limit?: number;/**Query start position, fore xample,o ffset= 0, meanss tart querying

fromr ow 1. */

offset?: number;}

114

BF
M

8.4.20 Getting the List of the Node Running Log

8.4.21 Getting Contents of the Node Running Log

- Full name of the interface: getSystemLoggerList

- Interface abbreviation: gll

- Callable methods: Http, Websocket, command line, Grpc

- Call method: post

- Interface url address: /api/system/getSystemLoggerList

- Request parameters.

- Full name of the interface: getSystemLoggerDetail

- Interface abbreviation: gld

- Callable methods: Http, Websocket, command line, Grpc

- Call method: post

- Interface url address: /api/system/getSystemLoggerDetail

8. Interface Documentation

115

BF
M

8.4.22 Deleting the Node Running Log

- Full name of the interface: delSystemLogger

- Interface abbreviation: none

- Callable methods: Http,Websocket

- Call method: post

- Interface url address: /api/system/delSystemLogger

- Request parameters.

8. Interface Documentation

- Request parameters.

116

BF
M8.4.23 Getting the Node Email Address

8.4.24 Setting the Node Email Address

- Full name of the interface: getEmailAddress

- Interface abbreviation: gea

- Callable methods: Http, Websocket, command line, Grpc

- Call method: post

- Interface url address: /api/system/getEmailAddress

- Request parameters.

- Full name of the interface: setEmailAddress

8. Interface Documentation

117

BF
M

8. Interface Documentation

- Interface abbreviation: sea

- Callable methods: Http, Websocket, command line, Grpc

- Call method: post

- Interface url address: /api/system/setEmailAddress

- Request parameters.

118

BF
M

8.4.25 Verifying Node Trustees by Node Private Key

- Full name of the interface: verifysystemsecret

- Interface abbreviation: vss

- Callable methods: Http, Websocket, command line, Grpc

- Call method: post

- Interface url address: /api/system/verifySystemSecret

- Request parameters.

8. Interface Documentation

119

BF
M

8.4.27 Getting Node Access Whitelist

- Full name of the interface: getSystemWhiteList

- Interface abbreviation: gwl

- Callable methods: Http,Websocket,command line,Grpc

- Call method: post

- Interface url address: /api/system/getSystemWhiteList

- Request parameters.

8. Interface Documentation

8.4.26 Setting Node Access Whitelist

- Full name of the interface: setSystemWhiteList

- Interface abbreviation: swl

- Callable methods: Http, Websocket, command line, Grpc

- Call method: post

- Interface url address: /api/system/setSystemWhiteList

- Request parameters.

120

BF
M

8.4.29 Getting Network-Related Information About a Node Process

- Full name of the interface: getProcessNetwork

- Interface abbreviation: gpn

- Callable methods: Http, Websocket, Command Line, Grpc

- Call method: post

8. Interface Documentation

8.4.28 Deleting Node Access Whitelist

- Full name of the interface: delSystemWhiteList

- Interface abbreviation: dwl

- Callable methods: Http, Websocket, command line, Grpc

- Call method: post

- Interface url address: /api/system/delSystemWhiteList

- Request parameters.

121

BF
M

8. Interface Documentation

- Interface url address: /api/system/getProcessNetwork

- Request parameters.

8.4.30 Getting Node Process CPU Information

- Full name of the interface: getProcessCPU

- Interface abbreviation: gpc

- Callable methods: Http,Websocket,command line,Grpc

- Call method: post

- Interface url address: /api/system/getProcessCPU

- Request parameters.

122

BF
M

8. Interface Documentation

8.4.31 Getting Node Process Memory Information

- Full name of the interface: getProcessMemory

- Interface abbreviation: gpm

- Callable methods: Http, Websocket, Command Line, Grpc

- Call method: post

- Interface url address: /api/system/getProcessMemory

- Request parameters.

123

BF
M

8. Interface Documentation

8.4.32 Sending Node Status at Regular Intervals

8.4.33 Timed Sending of Node CPU, Memory and Network
Information

- Full name of the interface: systemStatus

- Interface abbreviation: ess

- Callable methods: Http, Websocket, command line, Grpc

- Call method: post

- Interface url address: /api/system/systemStatus

- Request parameters.

- Full name of the interface: systemProcess

- Interface abbreviation: esp

- Callable methods: Http, Websocket, command line, Grpc

- Call method: post

- Interface url address: /api/system/systemProcess

- Request parameters.

124

BF
M

8.4.34 Getting Information About a Node

8.4.35 Getting Node Status

- Full name of the interface: getSystemInfo

- Interface abbreviation: none

- Callable methods: Http,Websocket

- Call method: post

- Interface url address: /api/system/getSystemInfo

- Request parameters: None

- Full name of the interface: getMachineStatus

- Interface abbreviation: none

- Callable methods: Http,Websocket

- Call method: post

- Interface url address: /api/system/getMachineStatus

- Request parameters: None

8. Interface Documentation

125

BF
M

9. Application Tools
9.1 Instant Messenger-Secret Chat

9.2 Five Knocks

Secret Chat is BFMeta's first blockchain-based decentralized mobile social tool for

intra-group private message exchange. By forming a group of nodes into a logical

group or a logical node, the concept of "virtual group" is built, and when you need

to send a message to everyone in the group, you only need to send a message to

this virtual node, realizing the private message sending and receiving of many-

to-many, and building a structural model of group private message exchange

under blockchain. It is a fast and secure structure model for message exchange in

blockchain, and solves the problem of restricted group sending from point to point

in blockchain.

It not only supports sending text, pictures, voice and video on the chain, but also

supports sharing and witnessing life to friends through "Square".

In the context of the epidemic normalization and the era of economic and

technological globalization, the market environment is becoming more and

more competitive, and the survival of enterprises is becoming more and more

difficult. In order to meet the harsh survival challenges in the modern business

environment, finding ways to improve the efficiency of enterprise management

and reduce the cost of business operations is the top priority for enterprises. One

of the effective ways to solve this problem is to change the office model.

9. Application Tools

126

BF
M

Under the traditional centralized office, all employees have fixed departments,

fixed leaders, fixed colleagues, fixed workstations, mature work patterns, and work

in a command-based manner. In the office mode with the leader as the central

node, everything is designed to enhance the efficiency of management as the first

priority. The problems brought by this model are:

1) Decision makers in the organization have limited access to information

2) Individuals in the organization have limited knowledge of information, and in

a centralized and hierarchical organizational model, information transfer is easily

distorted.

Five Knocks is the first distributed collaborative office tool created by BFMeta,

which breaks the centralized office method of the past for a long time and is a

distributed collaborative office tool in the Web3.0 value Internet era built with a

new decentralized and distributed idea.

This tool, with the blockchain technology of Distributed Autonomous Organization

(DAO) as the consensus rules for the autonomy of each organizational department

of the enterprise, realizes the digital management of the enterprise; with the

Secret Chat as the core technology of collaborative office, realizes the cross-

organizational and cross-regional communication of members of each department

without barriers.

Although the hierarchy still exists, the organizational structure is no longer

centered on management, but on employees and users. In such an organizational

structure, the traditional hierarchical relationship no longer exists, and the

superior, as the reporting object of the subordinate, is only a way to collect

information and only intervene a little when necessary. Although enterprise

9. Application Tools

127

BF
M

management is still hierarchical, user interaction has been decentralized. The

responsibilities and asset of all parties are clarified through negotiation, and an

open and transparent technical framework and procedural rules are formed in the

form of smart contracts, stored on the blockchain, and used as a basis to complete

cooperation between individuals.

9.3 Eye of God

Blockchain technology itself is complex, and even technical bullies need to spend

a lot of time learning and deploying it. For example, for Bitcoin and Ether, which

are currently mainstream in the market, only people with professional mining

machine deployment ability can participate in on-chain consensus and get

rewarded. This is unfriendly to white users.

To facilitate ordinary users to create blockchains and deploy individual nodes,

BFMeta has developed a visual chain management tool-Eye of God. Through a

visual and customizable configuration interface, it is easy for each user to custom

build their own blockchain and manage it.

9. Application Tools

128

BF
M

10. FDM Foundation and Token Distribution

BFMeta is distributed globally by the Future Development Metaverse (FDM)

Foundation, a Singapore-registered foundation, and BFM is the native Token of

BFMeta. The total number of BFMs issued is 1,100,000,000, of which 100,000,000

are pre-mining Token and 1,000,000,000 are generated through mining.

The distribution ratio of pre-mining Token is as follows: 10% for technical team

rewards, 20% for global major community airdrop, 30% for private placement,

40% for FDM Foundation to support future ecological development and global

developer support program use.

10. FDM Foundation and Token Distribution

129

BF
M

11. Disclaimer

This White Paper is not a recommendation that you purchase any BFMeta, nor is

it a document to which you should refer for any contract or purchase. This white

paper does not constitute an offer to buy or sell, nor does it constitute a contract

or commitment of any kind. BFMeta does not intend to constitute securities or any

other regulated product in any country or jurisdiction.

This White Paper is not the basis for a prospectus or any other offering document

for securities and is not intended to constitute an offering or solicitation of

securities or any other regulated product in any country or jurisdiction. This

White Paper has not been reviewed by any regulatory authority in any country or

jurisdiction.

You acknowledge and agree that BFMeta does not have the following functions:

1. Represent the asset, control or obligations of BFMeta or any other institution in

any jurisdiction, or the right to participate in or control the application of decisions

made by the foregoing.

2. Represent any type of investment.

3. Represents any marketable security that has intrinsic value or market price.

4. Represents any commodity or asset that any person is obligated to redeem, or to

purchase.

By participating in the Program, the participant acknowledges that he or she

11. Disclaimer

130

BF
M

understands and agrees to the terms and conditions set forth in these Terms and

Conditions and accepts the potential risks at his or her own risk.

1. Market Risk: If the overall cryptocurrency market is overvalued, then investment

risk will increase and participants may have high expectations of price growth for

the Program that may not be realized.

2. Systemic risk: This refers to force majeure factors, including but not limited to

natural disasters political unrest, etc.

3. Regulatory risk: The trading of cryptocurrencies is highly uncertain, and

due to the lack of strong regulation in the field of cryptocurrency trading,

cryptocurrencies are subject to the risk of sharp rises and falls, etc. Individual

participants who are inexperienced in the market may find it difficult to resist the

asset shock and psychological pressure caused by market instability.

4. Project risk: The team will spare no effort to achieve the goals mentioned in

the white paper, and now has a more mature business model, however, due to the

unpredictable development trend of the industry as a whole, the existing business

model may not match well with the market demand, thus making it difficult to

achieve profitability. At the same time, as this white paper may be updated with

the implementation of project details, if the updated details of the project are not

accessed by the participants of this program in a timely manner, the participants

will have insufficient knowledge due to information asymmetry, thus affecting the

subsequent development of the project.

5. Technical risks: The project is based on cryptographic algorithms, and the

rapid development of cryptography also brings potential risks of being cracked;

blockchain, distributed storage and other technologies support the core business

11. Disclaimer

131

BF
M

development, and the team cannot fully guarantee the implementation of the

technology; during the project update process, vulnerabilities may be found to

exist, which can be compensated by releasing updates, but the extent of the impact

caused by vulnerabilities cannot be guaranteed.

6. Hacking and crime risk: In terms of security, electronic tokens are anonymous

and difficult to trace, which are vulnerable to hacking or used by criminals, or may

involve illegal asset transfer and other criminal acts.

7. Policy risk: At present, the international regulatory policy for blockchain

projects and financing with virtual currency parties is still unclear, and there is a

certain possibility of loss to participants due to policy reasons.

8. Unknown risks: With the continuous development of blockchain technology,

there may be some risks that cannot be predicted at present.

This White Paper makes no representations or warranties that the information,

representations, opinions or other matters described or communicated in it

in connection with the Program are correct or complete, nor does it make any

representations or warranties as to the results or reasonableness of any forward-

looking or conceptual statements, and the absence of representations and

warranties is not limited to the foregoing. Nothing in this White Paper shall

constitute or be deemed to constitute any promise or representation as to the

future.

To the full extent permitted by applicable law, we will not be liable or responsible

for any loss or damage arising out of or in connection with any action taken by any

person in accordance with this White Paper, whether by negligence, default or lack

of care.

11. Disclaimer

132

BF
M

Participants are requested to fully understand the background and overall

framework of the team before participating and to participate rationally.

BFMeta reserves the right to amend and change the content of this white paper at

any time.

11. Disclaimer

	1. Abstract
	2. Content Overview
	3. Overall Design
	3.1 Open Source Mobile Blockchain System
	3.2.3 Distributed Storage
	3.2.2 Private Data Storage
	3.3 Blockchain Network Mechanism
	3.3.1 Full-Link Duplex Communication Network
	3.3.2 Node Addressing
	3.3.3 Bluetooth, NFC, AIRDROP Network Transmission

	3.4 Blockchain Evolution
	3.5 Cross-Chain Transactions
	3.5.1 Cross-Chain Network Interconnection
	3.5.2 Cross-Chain Decoupling
	3.5.3 Cross-Chain Asset Interchange

	3.6 Three-Layer Blockchain Architecture
	3.7 Large Block
	3.8 Address Private Key Management Mechanism-My Secret
	3.9 Automatic Upgrade
	3.10 Fork Merging
	3.11 Distributed Computing

	4. Consensus Protocol
	4.1 Consensus Algorithm of BFChainMeta
	4.1.1 TPOW+DPOP
	4.1.2 Miner Protocol
	4.1.2.1 Authorized Creation Protocol
	4.1.2.2 Genesis Basic Protocol
	4.1.2.3 Consensus Incentive Agreement
	4.1.2.4 Block Forging Agreement
	4.1.2.5 Contract Execution Protocol
	4.1.2.6 Event Processing Protocol
	4.1.2.7 Proof of Algorithm Protocol
	4.1.2.8 Network Communication Protocol

	4.2 Block Forger (Miner Node) Rotation
	4.2.1 Multi-Node, Multi-Process Block-Generating Method
	4.2.2 Block Forger Election Algorithm
	4.2.2.1 Becoming a Trustee
	4.2.2.2 Receiving/rejecting Votes
	4.2.2.3 Address Account Voting on Trustees
	4.2.2.4 Automatic Node Voting
	4.2.2.5 Entering the Candidate zone
	4.2.2.6 Becoming a Forger

	4.2.3 Consensus Motivation
	4.2.3.1 Consensus Incentive Mechanism
	4.2.3.2 Total Incentive Received for Forged Blocks

	4.2.4 Voting Algorithm
	4.2.4.1 Getting Ballots
	4.2.4.2 Automatic Voting
	4.2.4.3 Automatic Voting Recommendation Algorithm
	4.2.4.4 Manual Voting

	4.2.5 Voting Incentive
	4.2.5.1 Incentive Formula
	4.2.5.2 End-of-Round Calculation

	4.2.6 Distributed Transaction Synchronization

	5. Programmable Contracts
	5.1 Smart Contracts
	5.2 Digital Products (DP/NFT)
	5.3 DeFi Support

	6. Programmable Digital Asset Issuance
	6.1 Destruction Issuance (Deflation Mechanism)
	6.2 Decentralized Asset Exchange

	7. Chain Services
	7.1 Chain Domain Name-LNS
	7.2 DWeb
	7.3 Dual Offline Payment
	7.4 On-chain Red Envelope
	7.5 Service Market
	7.6 Crossing the World

	8. Interface Documentation
	8.1 Interface Incoming Parameters and Return Parameters Description
	8.1.1 Example of Passing/Entering Parameters

	8.2 Basic Interface
	8.2.1 Getting BFChain Version Number
	8.2.2 Getting the Current Latest Block of the Local Node
	8.2.3 Getting the Specified Block
	8.2.4 Getting the Specified Event
	8.2.5 Getting the Last Transaction of an Account
	8.2.6 Creating an Account
	8.2.7 Getting Node Status
	8.2.8 Getting the Last Transaction of the Account According to the Transaction Type
	8.2.9 Getting the Event Type

	8.3 Event Class Interface Usage Description
	8.3.1 Transfer Events
	8.3.1.1 Creating a Transfer Event
	8.3.1.2 Creating a Transfer Event (with Security Key)
	8.3.1.3 Sending a Transfer Event

	8.3.2 Setting Up a Secure Password Event
	8.3.2.1 Creating a Set-Security-Password Event
	8.3.2.2 Creating a Set-Username Event (with Security Key)
	8.3.2.3 Sending a Set-Security-Password Event

	8.3.3 Setting the User Name Event
	8.3.3.1 Creating a Set-Username Event
	8.3.3.2 Creating a Set-Username Event (with Security Key)
	8.3.3.3 Sending a Set-Username Event

	8.3.4 Registered Trustee Events
	8.3.4.1 Creating a Registered Trustee Event
	8.3.4.2 Creating a Registered Trustee Event (with Security Key)
	8.3.4.3 Sending a Registered Trustee Event

	8.3.5 Receiving Polling Events
	8.3.5.1 Creating a Receive-Vote Event
	8.3.5.2 Creating A Receive-Vote Event (with Security Key)
	8.3.5.3 Sending and Receiving Vote Events

	8.3.6 Rejecting Votes
	8.3.6.1 Creating A Reject-Vote Event
	8.3.6.2 Creating a Reject-Vote Event (with Security Key)
	8.3.6.3 Sending a Reject-Vote Event

	8.3.7 Polling Events
	8.3.7.1 Creating a Voting Event
	8.3.7.2 Creating a Voting Event (with Security Key)
	8.3.7.3 Sending and Receiving a Polling Event

	8.3.8 Publishing DApp Events
	8.3.8.1 Creating a Release-DApp Event
	8.3.8.2 Creating an Issue-DApp Event (with Security Key)
	8.3.8.3 Sending an Issue-DApp Event

	8.3.9 DApp Purchase Events
	8.3.9.1 Creating a Purchase-DApp Event
	8.3.9.2 Creating a Purchase-DApp Event (with Security Key)
	8.3.9.3 Sending a Purchase-DApp Event

	8.3.10.3 Sending a Deposit Event
	8.3.10.2 Creating a Deposit Event (with Security Key)
	8.3.11 Asset Issuance Events
	8.3.11.1 Creating an Asset Issuance Event
	8.3.11.2 Creating an Asset Issuance Event (with Security Key)
	8.3.11.3 Sending an Asset Issuance Event

	8.3.12 Asset Destruction Events
	8.3.12.1 Creating an Asset Destruction Event
	8.3.12.2 Create an Asset Destruction Event (with Security Key)
	8.3.12.3 Sending an Asset Destruction Event

	8.3.13 Asset Exchange Events
	8.3.13.1 Creating an Asset Exchange Event
	8.3.13.2 Creating an Asset Exchange Event (with Security Key)
	8.3.13.3 Sending an Asset Exchange Event

	8.3.14 Acceptance of an Asset Exchange Event
	8.3.14.1 Accepting an Asset Exchange Event
	8.3.14.2 Creating an Accept-Asset-Exchange Event (with Security Key)
	8.3.14.3 Sending an Accept-Asset-Exchange Event

	8.4 Instructions for Using the Node Management Interface
	8.4.1 Safety Close of Node
	8.4.2 Setting Node Password
	8.4.3 Verifying Node Password
	8.4.4 Adding Node Administrator
	8.4.5 Getting Node Administrator
	8.4.6 Verify Node Administrator
	8.4.7 Deleting Node Administrator
	8.4.8 Resetting Node Administrator
	8.4.9 Binding Node Accounts
	8.4.10 Getting Node Trustee
	8.4.11 Querying All Forgers Registered by the Node
	8.4.12 Query Details Of the Forger Registered by the Node
	8.4.13 Getting Node Details
	8.4.14 Node Information Query
	8.4.15 Setting Node Configuration Information
	8.4.16 Getting Node Configuration Information
	8.4.17 Getting Node State (Real-Time Information)
	8.4.18 Getting Node Access Statistics
	8.4.19 Getting Running Log Type of the Node
	8.4.20 Getting the List of the Node Running Log
	8.4.21 Getting Contents of the Node Running Log
	8.4.22 Deleting the Node Running Log
	8.4.23 Getting the Node Email Address
	8.4.24 Setting the Node Email Address
	8.4.25 Verifying Node Trustees by Node Private Key
	8.4.26 Setting Node Access Whitelist
	8.4.27 Getting Node Access Whitelist
	8.4.28 Deleting Node Access Whitelist
	8.4.29 Getting Network-Related Information About a Node Process
	8.4.30 Getting Node Process CPU Information
	8.4.31 Getting Node Process Memory Information
	8.4.32 Sending Node Status at Regular Intervals
	8.4.33 Timed Sending of Node CPU, Memory and Network Information
	8.4.34 Getting Information About a Node
	8.4.35 Getting Node Status

	9. Application Tools
	9.1 Instant Messenger-Secret Chat
	9.2 Five Knocks
	9.3 Eye of God

	10. FDM Foundation and Token Distribution
	11. Disclaimer

